|   | 
Details
   web
Records
Author Barrientos, L.; Borja-Lloret, M.; Casaña, J.V.; Dendooven, P.; Garcia Lopez, J.G.; Hueso-Gonzalez, F.; Jiméeez-Ramos, M.C.; Perez-Curbelo, J.; Ros, A.; Roser, J.; Senra, C.; Viegas, R.; Llosa, G.
Title Gamma-ray sources imaging and test-beam results with MACACO III Compton camera Type Journal Article
Year 2024 Publication (down) Physica Medica Abbreviated Journal Phys. Medica
Volume 117 Issue Pages 103199 - 10pp
Keywords Hadron therapy; Compton camera; Scintillator crystals; Silicon photomultipliers
Abstract Hadron therapy is a radiotherapy modality which offers a precise energy deposition to the tumors and a dose reduction to healthy tissue as compared to conventional methods. However, methods for real-time monitoring are required to ensure that the radiation dose is deposited on the target. The IRIS group of IFIC-Valencia developed a Compton camera prototype for this purpose, intending to image the Prompt Gammas emitted by the tissue during irradiation. The system detectors are composed of Lanthanum (III) bromide scintillator crystals coupled to silicon photomultipliers. After an initial characterization in the laboratory, in order to assess the system capabilities for future experiments in proton therapy centers, different tests were carried out in two facilities: PARTREC (Groningen, The Netherlands) and the CNA cyclotron (Sevilla, Spain). Characterization studies performed at PARTREC indicated that the detectors linearity was improved with respect to the previous version and an energy resolution of 5.2 % FWHM at 511 keV was achieved. Moreover, the imaging capabilities of the system were evaluated with a line source of 68Ge and a point-like source of 241Am-9Be. Images at 4.439 MeV were obtained from irradiation of a graphite target with an 18 MeV proton beam at CNA, to perform a study of the system potential to detect shifts at different intensities. In this sense, the system was able to distinguish 1 mm variations in the target position at different beam current intensities for measurement times of 1800 and 600 s.
Address [Barrientos, L.; Borja-Lloret, M.; Casana, J. V.; Hueso-Gonzalez, F.; Perez-Curbelo, J.; Ros, A.; Roser, J.; Senra, C.; Viegas, R.; Llosa, G.] CSIC UV, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: Luis.Barrientos@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Sci Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1120-1797 ISBN Medium
Area Expedition Conference
Notes WOS:001145147400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5892
Permanent link to this record
 

 
Author Baran, J. et al; Brzezinski, K.
Title Feasibility of the J-PET to monitor the range of therapeutic proton beams Type Journal Article
Year 2024 Publication (down) Physica Medica Abbreviated Journal Phys. Medica
Volume 118 Issue Pages 103301 - 9pp
Keywords PET; Range monitoring; J-PET; Monte Carlo simulations; Proton radiotherapy
Abstract Purpose: The aim of this work is to investigate the feasibility of the Jagiellonian Positron Emission Tomography (J -PET) scanner for intra-treatment proton beam range monitoring. Methods: The Monte Carlo simulation studies with GATE and PET image reconstruction with CASToR were performed in order to compare six J -PET scanner geometries. We simulated proton irradiation of a PMMA phantom with a Single Pencil Beam (SPB) and Spread -Out Bragg Peak (SOBP) of various ranges. The sensitivity and precision of each scanner were calculated, and considering the setup's cost-effectiveness, we indicated potentially optimal geometries for the J -PET scanner prototype dedicated to the proton beam range assessment. Results: The investigations indicate that the double -layer cylindrical and triple -layer double -head configurations are the most promising for clinical application. We found that the scanner sensitivity is of the order of 10-5 coincidences per primary proton, while the precision of the range assessment for both SPB and SOBP irradiation plans was found below 1 mm. Among the scanners with the same number of detector modules, the best results are found for the triple -layer dual -head geometry. The results indicate that the double -layer cylindrical and triple -layer double -head configurations are the most promising for the clinical application, Conclusions: We performed simulation studies demonstrating that the feasibility of the J -PET detector for PET -based proton beam therapy range monitoring is possible with reasonable sensitivity and precision enabling its pre -clinical tests in the clinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double -layer cylindrical and triple -layer dual -head J -PET geometry configurations seem promising for future clinical application.
Address [Baran, Jakub; Silarski, Michal; Chug, Neha; Coussat, Aurelien; Czerwinski, Eryk; Dadgar, Meysam; Dulski, Kamil; Eliyan, Kavya, V; Gajos, Aleksander; Kacprzak, Krzysztof; Kaplon, Lukasz; Korcyl, Grzegorz; Kozik, Tomasz; Kumar, Deepak; Niedzwiecki, Szymon; Panek, Dominik; Parzych, Szymon; del Rio, Elena Perez; Simbarashe, Moyo; Sharma, Sushil; Shivani; Skurzok, Magdalena; Stepien, Ewa L.; Tayefi, Keyvan; Tayefi, Faranak; Moskal, Pawel] Jagiellonian Univ, Fac Phys Astron & Appl Comp Sci, 11 Lojasiewicza St, PL-30348 Krakow, Poland, Email: jakubbaran92@gmail.com
Corporate Author Thesis
Publisher Elsevier Sci Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1120-1797 ISBN Medium
Area Expedition Conference
Notes WOS:001178648400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5990
Permanent link to this record
 

 
Author Nascimento, J.R.; Olmo, G.J.; Petrov, A.Y.; Porfirio, P.J.
Title On metric-affine bumblebee model coupled to scalar matter Type Journal Article
Year 2024 Publication (down) Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 1004 Issue Pages 116577 - 10pp
Keywords
Abstract We consider the coupling of the metric-affine bumblebee gravity model to scalar matter and calculate the lower -order contributions to two -point functions of bumblebee and scalar fields in the weak gravity approximation. We also obtain the one -loop effective potentials for both scalar and vector fields.
Address [Nascimento, J. R.; Petrov, A. Yu.; Porfirio, P. J.] Univ Fed Paraiba, Dept Fis, Caixa Postal 5008, BR-58051970 Joao Pessoa, PB, Brazil, Email: jroberto@fisica.ufpb.br;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:001248177100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6157
Permanent link to this record
 

 
Author Weber, M. et al; Esperante, D.
Title DONES EVO: Risk mitigation for the IFMIF-DONES facility Type Journal Article
Year 2024 Publication (down) Nuclear Materials and Energy Abbreviated Journal Nucl. Mater. Energy
Volume 38 Issue Pages 101622 - 5pp
Keywords Signal Transmission Improvement; RF Conditioning Optimisation; Beam Extraction Device; Medical Isotopes Production; Lithium Purification; Critical Components Manufacture
Abstract The International Fusion Materials Irradiation Facility- DEMO Oriented Neutron Source (IFMIF-DONES) is a scientific infrastructure aimed to provide an intense neutron source for the qualification of materials to be used in future fusion power reactors. Its implementation is critical for the construction of the fusion DEMOnstration Power Plant (DEMO). IFMIF-DONES is a unique facility requiring a broad set of technologies. Although most of the necessary technologies have already been validated, there are still some aspects that introduce risks in the evolution of the project. In order to mitigate these risks, a consortium of companies, with the support of research centres and the funding of the CDTI (Centre for the Development of Industrial Technology and Innovation), has launched the DONES EVO Programme, which comprises six lines of research: center dot Improvement of signal transmission and integrity (planning and integration risks) center dot Optimisation of RF conditioning processes (planning and reliability risks) center dot Development of a reliable beam extraction device (reliability risks) center dot Development of technologies for the production of medical isotopes (reliability risks) center dot Improvement of critical parts of the lithium purification system (safety and reliability risks) center dot Validation of the manufacture of critical components with special materials (reliability risk). DONES EVO will focus on developing the appropriate response to the risks identified in the IFMIFDONES project through research and prototyping around the associated technologies.
Address [Weber, M.; Ibarra, A.; Maldonado, R.; Podadera, I.] DONES Espana Consortium, IFMIF, Granada, Spain
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:001202783400001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 6075
Permanent link to this record
 

 
Author Miyagawa, P.S. et al; Bernabeu, P.; Lacasta, C.; Solaz, C.; Soldevila, U.
Title Analysis of the results from Quality Control tests performed on ATLAS18 Strip Sensors during on-going production Type Journal Article
Year 2024 Publication (down) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1064 Issue Pages 169457 - 9pp
Keywords HL-LHC; ATLAS; ITk; Strip sensors
Abstract The ATLAS experiment will replace its existing Inner Detector with the new all -silicon Inner Tracker (ITk) to cope with the operating conditions of the forthcoming high -luminosity phase of the LHC (HL-LHC). The outer regions of the ITk will be instrumented with similar to 18000 ATLAS18 strip sensors fabricated by Hamamatsu Photonics K.K. (HPK). With the launch of full-scale sensor production in 2021, the ITk strip sensor community has undertaken quality control (QC) testing of these sensors to ensure compliance with mechanical and electrical specifications agreed with HPK. The testing is conducted at seven QC sites on each of the monthly deliveries of similar to 500 sensors. This contribution will give an overview of the QC procedures and analysis; the tests most likely to determine pass/fail for a sensor are IV, long-term leakage current stability, full strip test and visual inspection. The contribution will then present trends in the results and properties following completion of similar to 60% of production testing. It will also mention challenges overcome through collaborative efforts with HPK during the early phases of production. With less than 5% of sensors rejected by QC testing, the overall production quality has been very good.
Address [Miyagawa, P. S.; Beck, G. A.; Bevan, A. J.; Chen, Z.; Dawson, I.; Zenz, S. C.] Queen Mary Univ London, Particle Phys Res Ctr, GO Jones Bldg, Mile End Rd, London E14NS, England, Email: paul.miyagawa@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001249611300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6158
Permanent link to this record