toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Morales, A.I.; Tuzon, P. url  doi
openurl 
  Title Misconceptions, Knowledge, and Attitudes Towards the Phenomenon of Radioactivity Type Journal Article
  Year 2022 Publication (down) Science & Education Abbreviated Journal Sci. Educ.  
  Volume 31 Issue Pages 405-426  
  Keywords  
  Abstract The teaching of the phenomenon of radioactivity is considered a key ingredient in the path towards developing critical thinking skills in many secondary science education curricula. Despite being one of the basic concepts in general physics courses, the scientific teaching literature of the last 40 years reports a great deal of misconceptions and conceptual errors related to radioactivity that seemingly appear regardless of the educational level and context. This study reports the first cross-sectional diagnostic study in Spain to secondary education students and pre-service teachers. Data were collected in the year 2019 through a questionnaire adapted from a previously validated one to explore the main misconceptions, attitudes, and knowledge status on the topic on a sample of 191 secondary school students and 29 Physics-and-Chemistry trainee teachers in the Spanish region of Valencia. Open and closed questions were used to categorize the entity itself, its properties, and the main misconceptions related to radioactivity. The responses were analysed using conventional statistical methods. The results indicate an evolution from a widespread dissenting notion on the phenomenon, which is staunchly related to danger, hazard, and destruction in the lowest educational levels, towards a more rational, relative, and multidimensional perspective in the highest ones. On the other hand, the ideas, emotions, and attitudes of the inquired individuals are in good agreement with the main misconceptions reported in the literature.  
  Address [Morales Lopez, Ana Isabel] Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: aimolo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-7220 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000679599100001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4903  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; March, L.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Solans, C.A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M. doi  openurl
  Title A Particle Consistent with the Higgs Boson Observed with the ATLAS Detector at the Large Hadron Collider Type Journal Article
  Year 2012 Publication (down) Science Abbreviated Journal Science  
  Volume 338 Issue 6114 Pages 1576-1582  
  Keywords  
  Abstract Nearly 50 years ago, theoretical physicists proposed that a field permeates the universe and gives energy to the vacuum. This field was required to explain why some, but not all, fundamental particles have mass. Numerous precision measurements during recent decades have provided indirect support for the existence of this field, but one crucial prediction of this theory has remained unconfirmed despite 30 years of experimental searches: the existence of a massive particle, the standard model Higgs boson. The ATLAS experiment at the Large Hadron Collider at CERN has now observed the production of a new particle with a mass of 126 giga-electron volts and decay signatures consistent with those expected for the Higgs particle. This result is strong support for the standard model of particle physics, including the presence of this vacuum field. The existence and properties of the newly discovered particle may also have consequences beyond the standard model itself.  
  Address  
  Corporate Author Thesis  
  Publisher Amer Assoc Advancement Science Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000312533100043 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1393  
Permanent link to this record
 

 
Author XENON Collaboration (Aprile, E. et al); Orrigo, S.E.A. url  doi
openurl 
  Title Exclusion of leptophilic dark matter models using XENON100 electronic recoil data Type Journal Article
  Year 2015 Publication (down) Science Abbreviated Journal Science  
  Volume 349 Issue 6250 Pages 851-854  
  Keywords  
  Abstract Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 x 10(-35) cm(2) for particle masses of m(chi) = 2 GeV/c(2). Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4 sigma confidence level, mirror dark matter at 3.6 sigma, and luminous dark matter at 4.6 sigma.  
  Address  
  Corporate Author Thesis  
  Publisher Amer Assoc Advancement Science Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000359832700045 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2490  
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Martin-Albo, J.; Mezzetto, M.; Monrabal, F.; Sorel, M. url  doi
openurl 
  Title The search for neutrinoless double beta decay Type Journal Article
  Year 2012 Publication (down) Rivista del Nuovo Cimento Abbreviated Journal Riv. Nuovo Cimento  
  Volume 35 Issue 2 Pages 29-98  
  Keywords  
  Abstract In the last two decades the search for neutrinoless double beta decay has evolved into one of the highest priorities for understanding neutrinos and the origin of mass. The main reason for this paradigm shift has been the discovery of neutrino oscillations, which clearly established the existence of massive neutrinos. An additional motivation for conducting such searches comes from the existence of an unconfirmed, but not refuted, claim of evidence for neutrinoless double decay in Ge-76. As a consequence, a new generation of experiments, employing different detection techniques and beta beta isotopes, is being actively promoted by experimental groups across the world. In addition, nuclear theorists are making remarkable progress in the calculation of the neutrinoless double beta. decay nuclear matrix elements, thus eliminating a substantial part of the theoretical uncertainties affecting the particle physics interpretation of this process. In this report, we review the main aspects of the double beta decay process and some of the most relevant experiments. The picture that emerges is one where searching for neutrinoless double beta decay is recognized to have both far-reaching theoretical implications and promising prospects for experimental observation in the near future.  
  Address [Gomez-Cadenas, J. J.; Martin-Albo, J.; Monrabal, F.; Sorel, M.] CSIC, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: sorel@ific.uv.es  
  Corporate Author Thesis  
  Publisher Soc Italiana Fisica Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0393-697x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301469900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 942  
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Martin-Albo, J.; Menendez, J.; Mezzetto, M.; Monrabal, F.; Sorel, M. doi  openurl
  Title The search for neutrinoless double-beta decay Type Journal Article
  Year 2024 Publication (down) Rivista del Nuovo Cimento Abbreviated Journal Riv. Nuovo Cimento  
  Volume 46 Issue Pages 619-692  
  Keywords Neutrinos; Majorana; Double-beta decay; Nuclear matrix elements  
  Abstract Neutrinos are the only particles in the Standard Model that could be Majorana fermions, that is, completely neutral fermions that are their own antiparticles. The most sensitive known experimental method to verify whether neutrinos are Majorana particles is the search for neutrinoless double-beta decay. The last 2 decades have witnessed the development of a vigorous program of neutrinoless double-beta decay experiments, spanning several isotopes and developing different strategies to handle the backgrounds masking a possible signal. In addition, remarkable progress has been made in the understanding of the nuclear matrix elements of neutrinoless double-beta decay, thus reducing a substantial part of the theoretical uncertainties affecting the particle-physics interpretation of the process. On the other hand, the negative results by several experiments, combined with the hints that the neutrino mass ordering could be normal, may imply very long lifetimes for the neutrinoless double-beta decay process. In this report, we review the main aspects of such process, the recent progress on theoretical ideas and the experimental state of the art. We then consider the experimental challenges to be addressed to increase the sensitivity to detect the process in the likely case that lifetimes are much longer than currently explored, and discuss a selection of the most promising experimental efforts.  
  Address [Gomez-Cadenas, Juan Jose; Monrabal, Francesc] Donostia Int Phys Ctr, ERC Basque Excellence Res Ctr, Donostia San Sebastian 20018, Spain, Email: jjgomezcadenas@dipc.org  
  Corporate Author Thesis  
  Publisher Springernature Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0393-697x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001151173800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5915  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva