toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author De Romeri, V.; Majumdar, A.; Papoulias, D.K.; Srivastava, R. url  doi
openurl 
  Title XENONnT and LUX-ZEPLIN constraints on DSNB-boosted dark matter Type Journal Article
  Year 2024 Publication (up) Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 028 - 34pp  
  Keywords dark matter detectors; dark matter simulations; supernova neutrinos; supernovas  
  Abstract We consider a scenario in which dark matter particles are accelerated to semirelativistic velocities through their scattering with the Diffuse Supernova Neutrino Background. Such a subdominant, but more energetic dark matter component can be then detected via its scattering on the electrons and nucleons inside direct detection experiments. This opens up the possibility to probe the sub -GeV mass range, a region of parameter space that is usually not accessible at such facilities. We analyze current data from the XENONnT and LUX-ZEPLIN experiments and we obtain novel constraints on the scattering cross sections of sub -GeV boosted dark matter with both nucleons and electrons. We also highlight the importance of carefully taking into account Earth's attenuation effects as well as the finite nuclear size into the analysis. By comparing our results to other existing constraints, we show that these effects lead to improved and more robust constraints.  
  Address [Romeri, Valentina De] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient UV C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: deromeri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001195757300010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6043  
Permanent link to this record
 

 
Author Babak, S.; Caprini, C.; Figueroa, D.G.; Karnesis, N.; Marcoccia, P.; Nardini, G.; Pieroni, M.; Ricciardone, A.; Sesana, A.; Torrado, J. url  doi
openurl 
  Title Stochastic gravitational wave background from stellar origin binary black holes in LISA Type Journal Article
  Year 2023 Publication (up) Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 08 Issue 8 Pages 034 - 37pp  
  Keywords  
  Abstract We use the latest constraints on the population of stellar origin binary black holes (SOBBH) from LIGO/Virgo/KAGRA (LVK) observations, to estimate the stochastic gravitational wave background (SGWB) they generate in the frequency band of LISA. In order to account for the faint and distant binaries, which contribute the most to the SGWB, we extend the merger rate at high redshift assuming that it tracks the star formation rate. We adopt different methods to compute the SGWB signal: we perform an analytical evaluation, we use Monte Carlo sums over the SOBBH population realisations, and we account for the role of the detector by simulating LISA data and iteratively removing the resolvable signals until only the confusion noise is left. The last method allows the extraction of both the expected SGWB and the number of resolvable SOBBHs. Since the latter are few for signal-to-noise ratio thresholds larger than five, we confirm that the spectral shape of the SGWB in the LISA band agrees with the analytical prediction of a single power law. We infer the probability distribution of the SGWB amplitude from the LVK GWTC-3 posterior of the binary population model: at the reference frequency of 0.003 Hz it has an interquartile range of h2ΩGW(f = 3 × 10-3 Hz) ∈ [5.65, 11.5] × 10-13, in agreement with most previous estimates. We then perform a MC analysis to assess LISA's capability to detect and characterise this signal. Accounting for both the instrumental noise and the galactic binaries foreground, with four years of data, LISA will be able to detect the SOBBH SGWB with percent accuracy, narrowing down the uncertainty on the amplitude by one order of magnitude with respect to the range of possible amplitudes inferred from the population model. A measurement of this signal by LISA will help to break the degeneracy among some of the population parameters, and provide interesting constraints, in particular on the redshift evolution of the SOBBH merger rate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6081  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Bariego-Quintana, A.; Calvo, D.; Carretero, V.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Lazo, A.; Lessing, N.; Manczak, J.; Palacios Gonzalez, J.; Pastor Gomez, E.J.; Rahaman, U.; Real, D.; Saina, A.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Searches for neutrino counterparts of gravitational waves from the LIGO/Virgo third observing run with KM3NeT Type Journal Article
  Year 2024 Publication (up) Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 04 Issue 4 Pages 026 - 28pp  
  Keywords neutrino astronomy; gravitational waves / sources; neutrino experiments  
  Abstract The KM3NeT neutrino telescope is currently being deployed at two different sites in the Mediterranean Sea. First searches for astrophysical neutrinos have been performed using data taken with the partial detector configuration already in operation. The paper presents the results of two independent searches for neutrinos from compact binary mergers detected during the third observing run of the LIGO and Virgo gravitational wave interferometers. The first search looks for a global increase in the detector counting rates that could be associated with inverse beta decay events generated by MeV-scale electron anti -neutrinos. The second one focuses on upgoing track -like events mainly induced by muon (anti -)neutrinos in the GeV-TeV energy range. Both searches yield no significant excess for the sources in the gravitational wave catalogs. For each source, upper limits on the neutrino flux and on the total energy emitted in neutrinos in the respective energy ranges have been set. Stacking analyses of binary black hole mergers and neutron star -black hole mergers have also been performed to constrain the characteristic neutrino emission from these categories.  
  Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.; Sinopoulou, A.; Tosta e Melo, I] INFN, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: lestum@cppm.in2p3.fr;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001208840500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6115  
Permanent link to this record
 

 
Author Martinez-Mirave, P.; Tamborra, I.; Tortola, M. url  doi
openurl 
  Title The Sun and core-collapse supernovae are leading probes of the neutrino lifetime Type Journal Article
  Year 2024 Publication (up) Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages 002 - 39pp  
  Keywords neutrino properties; solar and atmospheric neutrinos; supernova neutrinos  
  Abstract The large distances travelled by neutrinos emitted from the Sun and core -collapse supernovae together with the characteristic energy of such neutrinos provide ideal conditions to probe their lifetime, when the decay products evade detection. We investigate the prospects of probing invisible neutrino decay capitalising on the detection of solar and supernova neutrinos as well as the diffuse supernova neutrino background (DSNB) in the next -generation neutrino observatories Hyper-Kamiokande, DUNE, JUNO, DARWIN, and RES-NOVA. We find that future solar neutrino data will be sensitive to values of the lifetime -to -mass ratio tau 1 /m 1 and tau 2 /m 2 of O(10 – 1 -10 – 2 ) s/eV. From a core -collapse supernova explosion at 10 kpc, lifetime -to -mass ratios of the three mass eigenstates of O(10 5 ) s/eV could be tested. After 20 years of data taking, the DSNB would extend the sensitivity reach of tau 1 /m 1 to 10 8 s/eV. These results promise an improvement of about 6-15 orders of magnitude on the values of the decay parameters with respect to existing limits.  
  Address [Martinez-Mirave, Pablo; Tamborra, Irene] Univ Copenhagen, Niels Bohr Inst, Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen, Denmark, Email: pablo.mirave@nbi.ku.dk;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001217801000002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6144  
Permanent link to this record
 

 
Author Bhattacharya, S.; Mondal, N.; Roshan, R.; Vatsyayan, D. url  doi
openurl 
  Title Leptogenesis, dark matter and gravitational waves from discrete symmetry breaking Type Journal Article
  Year 2024 Publication (up) Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 029 - 25pp  
  Keywords leptogenesis; dark matter theory; gravitational waves / theory  
  Abstract We analyse a model that connects the neutrino sector and the dark sector of the universe via a mediator 41., stabilised by a discrete Z4 symmetry that breaks to a remnant Z2 upon 41. acquiring a non -zero vacuum expectation value (v phi). The model accounts for the observed baryon asymmetry of the universe via additional contributions to the canonical Type -I leptogenesis. The Z4 symmetry breaking scale (v phi) in the model not only establishes a connection between the neutrino sector and the dark sector, but could also lead to gravitational wave signals that are within the reach of current and future experimental sensitivities.  
  Address [Bhattacharya, Subhaditya; Mondal, Niloy] Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, Assam, India, Email: subhab@iitg.ac.in;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001246744300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6162  
Permanent link to this record
 

 
Author Lessa, L.A.; Maluf, R.V.; Silva, J.E.G.; Almeida, C.A.S. url  doi
openurl 
  Title Braneworlds in warped Einsteinian cubic gravity Type Journal Article
  Year 2024 Publication (up) Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 05 Issue 5 Pages 123 - 25pp  
  Keywords Gauss-Bonnet-Lovelock-Horndeski-Palatini etc gravity theories; gravity; modified gravity  
  Abstract Einstenian cubic gravity (ECG) is a modified theory of gravity constructed with cubic contractions of the curvature tensor. This theory has the remarkable feature of having the same two propagating degrees of freedom of Einstein gravity (EG), at the perturbative level on maximally symmetric spacetimes. The additional unstable modes steaming from the higher order derivative dynamics are suppressed provided that we consider the ECG as an effective field theory wherein the cubic terms are seen as perturbative corrections of the Einstein -Hilbert term. Extensions of ECG have been proposed in cosmology and compact objects in order to probe if this property holds in more general configurations. In this work, we construct a modified ECG gravity in a five dimensional warped braneworld scenario. By assuming a specific combination of the cubic parameters, we obtained modified gravity equations of motion with terms up to second -order. For a thin 3-brane, the cubic -gravity corrections yield an effective positive bulk cosmological constant. Thus, in order to keep the 5D bulk warped compact, an upper bound of the cubic parameter with respect to the bulk curvature was imposed. For a thick brane, the cubic -gravity terms modify the scalar field potential and its corresponding vacuum. Nonetheless, the domain -wall structure with a localized source is preserved. At the perturbative level, the Kaluza-Klein (KK) tensor gravitational modes are stable and possess a localized massless mode provided the cubic corrections are small compared to the EG braneworld.  
  Address [Lessa, L. A.; Maluf, R. V.; Silva, J. E. G.; Almeida, C. A. S.] Univ Fed Ceara UFC, Dept Fis, Campus Pici, BR-60455760 Fortaleza, CE, Brazil, Email: leandrolessa@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001240966600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6164  
Permanent link to this record
 

 
Author Fernandez Casani, A.; Orduña, J.M.; Sanchez, J.; Gonzalez de la Hoz, S. doi  openurl
  Title A Reliable Large Distributed Object Store Based Platform for Collecting Event Metadata Type Journal Article
  Year 2021 Publication (up) Journal of Grid Computing Abbreviated Journal J. Grid Comput.  
  Volume 19 Issue 3 Pages 39 - 19pp  
  Keywords Grid computing; Hadoop file system; Object-Based storage  
  Abstract The Large Hadron Collider (LHC) is about to enter its third run at unprecedented energies. The experiments at the LHC face computational challenges with enormous data volumes that need to be analysed by thousands of physics users. The ATLAS EventIndex project, currently running in production, builds a complete catalogue of particle collisions, or events, for the ATLAS experiment at the LHC. The distributed nature of the experiment data model is exploited by running jobs at over one hundred Grid data centers worldwide. Millions of files with petabytes of data are indexed, extracting a small quantity of metadata per event, that is conveyed with a data collection system in real time to a central Hadoop instance at CERN. After a successful first implementation based on a messaging system, some issues suggested performance bottlenecks for the challenging higher rates in next runs of the experiment. In this work we characterize the weaknesses of the previous messaging system, regarding complexity, scalability, performance and resource consumption. A new approach based on an object-based storage method was designed and implemented, taking into account the lessons learned and leveraging the ATLAS experience with this kind of systems. We present the experiment that we run during three months in the real production scenario worldwide, in order to evaluate the messaging and object store approaches. The results of the experiment show that the new object-based storage method can efficiently support large-scale data collection for big data environments like the next runs of the ATLAS experiment at the LHC.  
  Address [Fernandez Casani, Alvaro; Sanchez, Javier; Gonzalez de la Hoz, Santiago] Univ Valencia, Inst Fis Corpuscular IFIC, Burjassot, Spain, Email: alvaro.fernandez@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1570-7873 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000692413100001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4953  
Permanent link to this record
 

 
Author ANTARES Collaboration (Adrian-Martinez, S. et al); Barrios-Marti, J.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title A search for time dependent neutrino emission from microquasars with the ANTARES telescope Type Journal Article
  Year 2014 Publication (up) Journal of High Energy Astrophysics Abbreviated Journal J. High Ener. Astrophy.  
  Volume 3 Issue Pages 9-17  
  Keywords  
  Abstract Results are presented on a search for neutrino emission from a sample of six microquasars, based on the data collected by the ANTARES neutrino telescope between 2007 and 2010. By means of appropriate time cuts, the neutrino search has been restricted to the periods when the acceleration of relativistic jets was taking place at the microquasars under study. The time cuts have been chosen using the information from the X-ray telescopes RXTE/ASM and Swift/BAT, and, in one case, the gamma-ray telescope Fermi/LAT. No statistically significant excess has been observed, thus upper limits on the neutrino fluences have been derived and compared to the predictions by models. Constraints have been put on the ratio of proton to electron luminosity in the jets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2133  
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Alves, S.; Calvo, D.; Carretero, V.; Gozzini, R.; Hernandez-Rey, J.J.; Khan-Chowdhury, N.R.; Manczak, J.; Pieterse, C.; Sanchez-Losa, A.; Salesa Greus, F.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Search for magnetic monopoles with ten years of the ANTARES neutrino telescope Type Journal Article
  Year 2022 Publication (up) Journal of High Energy Astrophysics Abbreviated Journal J. High Energy Astrophys.  
  Volume 34 Issue Pages 1-8  
  Keywords ANTARES telescope; Magnetic monopoles; Neutrino  
  Abstract This work presents a new search for magnetic monopoles using data taken with the ANTARES neutrino telescope over a period of 10 years (January 2008 to December 2017). Compared to previous ANTARES searches, this analysis uses a run-by-run simulation strategy, with a larger exposure as well as a new simulation of magnetic monopoles taking into account the Kasama, Yang and Goldhaber model for their interaction cross-section with matter. No signal compatible with the passage of relativistic magnetic monopoles is observed, and upper limits on the flux of magnetic monopoles with beta = v/c & nbsp;>=& nbsp;0.55, are presented. For ultra-relativistic magnetic monopoles the flux limit is similar to 7 x 10(-18) cm(-2) s(-1) sr(-1). (C)& nbsp;2022 Elsevier B.V. All rights reserved.  
  Address [Albert, A.; Pradier, T.] Univ Strasbourg, CNRS, UMR 7178, F-67000 Strasbourg, France, Email: boumaaza.jihad@gmail.com  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-4048 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000791701000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5223  
Permanent link to this record
 

 
Author Ackermann, M. et al; Garcia Soto, A. url  doi
openurl 
  Title High-energy and ultra-high-energy neutrinos: A Snowmass white paper Type Journal Article
  Year 2022 Publication (up) Journal of High Energy Astrophysics Abbreviated Journal J. High Energy Astrophys.  
  Volume 36 Issue Pages 55-110  
  Keywords  
  Abstract Astrophysical neutrinos are excellent probes of astroparticle physics and high-energy physics. With energies far beyond solar, supernovae, atmospheric, and accelerator neutrinos, high-energy and ultrahigh-energy neutrinos probe fundamental physics from the TeV scale to the EeV scale and beyond. They are sensitive to physics both within and beyond the Standard Model through their production mechanisms and in their propagation over cosmological distances. They carry unique information about their extreme non-thermal sources by giving insight into regions that are opaque to electromagnetic radiation. This white paper describes the opportunities astrophysical neutrino observations offer for astrophysics and high-energy physics, today and in coming years.  
  Address [Ackermann, Markus] DESY, D-15738 Zeuthen, Germany, Email: markus.ackermann@desy.de;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-4048 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000890744900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5434  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva