toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Measurement of the CKM angle gamma using B-+/- -> DK +/- with D -> K-S(0)pi(+)pi(-), (KSK+K-)-K-0 decays Type Journal Article
  Year 2018 Publication (up) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 176 - 36pp  
  Keywords B physics; CKM angle gamma; CP violation; Flavor physics; Hadron-Hadron scattering (experiments)  
  Abstract A binned Dalitz plot analysis of B-+/- -> DK +/- decays, with D -> K-S(0)pi(+)pi(-) and D -> (KSK+K-)-K-0, is used to perform a measurement of the CP-violating observables x(+/-) and y(+/-), which are sensitive to the Cabibbo-Kobayashi-Maskawa angle gamma. The analysis is performed without assuming any D decay model, through the use of information on the strong-phase variation over the Dalitz plot from the CLEO collaboration. Using a sample of proton-proton collision data collected with the LHCb experiment in 2015 and 2016, and corresponding to an integrated luminosity of 2.0 fb(-1), the values of the CP violation parameters are found to be x = (9.0 +/- 1.7 +/- 0.7 +/- 0.4) x 10(-2), y = (2.1 +/- 2.2 +/- 0.5 +/- 1.1) x 10(-2), x(+) = (-7.7 +/- 1.9 +/- 0.7 +/- 0.4) x 10(-2), and y(+) = (-1.0 +/- 1.9 +/- 0.4 +/- 0.9) x10(-2). The first uncertainty is statistical, the second is systematic, and the third is due to the uncertainty on the strong-phase measurements. These values are used to obtain gamma = (87(+)(12)(+11))degrees, r(B) = 0.086(-)(0.1)(43)(+0.013), and delta(B) = (101 +/- 11), where r(B) is the ratio between the suppressed and favoured B-decay amplitudes and delta(B) is the corresponding strong-interaction phase difference. This measurement is combined with the result obtained using 2011 and 2012 data collected with the LHCb experiment, to give gamma = (80(-9)(+10))degrees, r(B) = 0.080 +/- 0.011, and delta(B) = (110 +/- 10)degrees.  
  Address [Bediaga, I; Cruz Torres, M.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; Molina Rodriguez, J.; dos Reis, A. C.; Soares Lavra, L.; Tourinho Jadallah Aoude, R.] CBPF, Rio De Janeiro, Brazil, Email: mikkel.bjoern@physics.ox.ac.uk  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000443527200004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3716  
Permanent link to this record
 

 
Author Bernabeu, J.; Segarra, A. url  doi
openurl 
  Title Signatures of the genuine and matter-induced components of the CP violation asymmetry in neutrino oscillations Type Journal Article
  Year 2018 Publication (up) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 063 - 26pp  
  Keywords CP violation; Discrete Symmetries; Neutrino Physics  
  Abstract CP asymmetries for neutrino oscillations in matter can be disentangled into the matter-induced CPT-odd (T-invariant) component and the genuine T-odd (CPT-invariant) component. For their understanding in terms of the relevant ingredients, we develop a new perturbative expansion in both m2| without any assumptions between m2 and a, and study the subtleties of the vacuum limit in the two terms of the CP asymmetry, moving from the CPT-invariant vacuum limit a 0 to the T-invariant limit m20. In the experimental region of terrestrial accelerator neutrinos, we calculate their approximate expressions from which we prove that, at medium baselines, the CPT-odd component is small and nearly -independent, so it can be subtracted from the experimental CP asymmetry as a theoretical background, provided the hierarchy is known. At long baselines, on the other hand, we find that (i) a Hierarchy-odd term in the CPT-odd component dominates the CP asymmetry for energies above the first oscillation node, and (ii) the CPT-odd term vanishes, independent of the CP phase , at E = 0.92 GeV (L/1300 km) near the second oscillation maximum, where the T-odd term is almost maximal and proportional to sin . A measurement of the CP asymmetry in these energy regions would thus provide separate information on (i) the neutrino mass ordering, and (ii) direct evidence of genuine CP violation in the lepton sector.  
  Address [Bernabeu, Jose] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Jose.Bernabeu@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000449817300002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3801  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Measurement of the time-integrated CP asymmetry in D (0) -> K (S) (0) K (S) (0) decays Type Journal Article
  Year 2018 Publication (up) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 048 - 19pp  
  Keywords Charm physics; CP violation; Flavor physics; Hadron-Hadron scattering (experiments)  
  Abstract A measurement of the time-integrated CP asymmetry in D (0) -> K (S) (0) K (S) (0) decays is reported. The data correspond to an integrated luminosity of about 2 fb(-1) collected in 2015-2016 by the LHCb collaboration in pp collisions at a centre-of-mass energy of 13 TeV. The D (0) candidate is required to originate from a D (*+) -> D (0) pi (+) decay, allowing the determination of the flavour of the D (0) meson using the pion charge. The D (0) -> K (+) K (-) decay, which has a well measured CP asymmetry, is used as a calibration channel. The CP asymmetryfor D (0) -> K (S) (0) K (S) (0) is measured to be where the first uncertainty is statistical and the second is systematic. This result is combined with the previous LHCb measurement at lower centre-of-mass energies to obtain A(CP) (D-0 -> K-S(0) K-S(0)) = (2.3 +/- 2.8 +/- 0.9)%.  
  Address [Bediaga, I.; Cruz Torres, M.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; Molina Rodriguez, J.; dos Reis, A. C.; Soares Lavra, L.; Jadallah Aoude, R. Tourinho] CBPF, Rio De Janeiro, Brazil, Email: giulia.tuci@pi.infn.it  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000451087600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3823  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Search for CP violation through an amplitude analysis of D-0 K+K-+- decays Type Journal Article
  Year 2019 Publication (up) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 126 - 34pp  
  Keywords Charm physics; CP violation; Flavor physics; Hadron-Hadron scattering (experiments)  
  Abstract A search for CP violation in the Cabibbo-suppressed D-0 K+K-+- decay mode is performed using an amplitude analysis. The measurement uses a sample of pp collisions recorded by the LHCb experiment during 2011 and 2012, corresponding to an integrated luminosity of 3.0 fb(-1). The D-0 mesons are reconstructed from semileptonic b-hadron decays into D0-X final states. The selected sample contains more than 160 000 signal decays, allowing the most precise amplitude modelling of this D-0 decay to date. The obtained amplitude model is used to perform the search for CP violation. The result is compatible with CP symmetry, with a sensitivity ranging from 1% to 15% depending on the amplitude considered.  
  Address [Bediaga, I.; Cruz Torres, M.; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Soares Lavra, l.; Tourinho Jadallah Aoude, R.] CBPF, Rio De Janeiro, Brazil, Email: maxime.schubiger@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000459484700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3927  
Permanent link to this record
 

 
Author Chen, P.; Centelles Chulia, S.; Ding, G.J.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title CP symmetries as guiding posts: revamping tri-bi-maximal mixing. Part I Type Journal Article
  Year 2019 Publication (up) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 036 - 27pp  
  Keywords CP violation; Discrete Symmetries; Neutrino Physics  
  Abstract We analyze the possible generalized CP symmetries admitted by the Tri-Bi-Maximal (TBM) neutrino mixing. Taking advantage of these symmetries we construct in a systematic way other variants of the standard TBM Ansatz. Depending on the type and number of generalized CP symmetries imposed, we get new mixing matrices, all of which related to the original TBM matrix. One of such revamped TBM variants is the recently discussed mixing matrix of arXiv:1806.03367. We also briefly discuss the phenomenological implications following from these mixing patterns.  
  Address [Chen, Peng] Ocean Univ China, Coll Informat Sci & Engn, 238 Songling Rd, Qingdao 266100, Shandong, Peoples R China, Email: pche@mail.ustc.edu.cn;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000460751400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3941  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva