Ros Garcia, A., Barrio, J., Etxebeste, A., Garcia-Lopez, J., Jimenez-Ramos, M. C., Lacasta, C., et al. (2020). MACACO II test-beam with high energy photons. Phys. Med. Biol., 65(24), 245027–12pp.
Abstract: The IRIS group at IFIC Valencia is developing a three-layer Compton camera for treatment monitoring in proton therapy. The system is composed of three detector planes, each made of a LaBr3<i monolithic crystal coupled to a SiPM array. Having obtained successful results with the first prototype (MACACO) that demonstrated the feasibility of the proposed technology, a second prototype (MACACO II) with improved performance has been developed, and is the subject of this work. The new system has an enhanced detector energy resolution which translates into a higher spatial resolution of the telescope. The image reconstruction method has also been improved with an accurate model of the sensitivity matrix. The device has been tested with high energy photons at the National Accelerator Centre (CNA, Seville). The tests involved a proton beam of 18 MeV impinging on a graphite target, to produce 4.4 MeV photons. Data were taken at different system positions of the telescope with the first detector at 65 and 160 mm from the target, and at different beam intensities. The measurements allowed successful reconstruction of the photon emission distribution at two target positions separated by 5 mm in different telescope configurations. This result was obtained both with data recorded in the first and second telescope planes (two interaction events) and, for the first time in beam experiments, with data recorded in the three planes (three interaction events).
|
Valdes-Cortez, C., Ballester, F., Vijande, J., Gimenez, V., Gimenez-Alventosa, V., Perez-Calatayud, J., et al. (2020). Depth-dose measurement corrections for the surface electronic brachytherapy beams of an Esteya(R) unit: a Monte Carlo study. Phys. Med. Biol., 65(24), 245026–12pp.
Abstract: Three different correction factors for measurements with the parallel-plate ionization chamber PTW T34013 on the Esteya electronic brachytherapy unit have been investigated. This chamber type is recommended by AAPM TG-253 for depth-dose measurements in the 69.5 kV x-ray beam generated by the Esteya unit. Monte Carlo simulations using the PENELOPE-2018 system were performed to determine the absorbed dose deposited in water and in the chamber sensitive volume at different depths with a Type A uncertainty smaller than 0.1%. Chamber-to-chamber differences have been explored performing measurements using three different chambers. The range of conical applicators available, from 10 to 30 mm in diameter, has been explored. Using a depth-independent global chamber perturbation correction factor without a shift of the effective point of measurement yielded differences between the absorbed dose to water and the corrected absorbed dose in the sensitive volume of the chamber of up to 1% and 0.6% for the 10 mm and 30 mm applicators, respectively. Calculations using a depth-dependent perturbation factor, including or excluding a shift of the effective point of measurement, resulted in depth-dose differences of about +/- 0.5% or less for both applicators. The smallest depth-dose differences were obtained when a shift of the effective point of measurement was implemented, being displaced 0.4 mm towards the center of the sensitive volume of the chamber. The correction factors were obtained with combined uncertainties of 0.4% (k = 2). Uncertainties due to chamber-to-chamber differences are found to be lower than 2%. The results emphasize the relevance of carrying out detailed Monte Carlo studies for each electronic brachytherapy device and ionization chamber used for its dosimetry.
|
Roser, J., Barrientos, L., Bernabeu, J., Borja-Lloret, M., Muñoz, E., Ros, A., et al. (2022). Joint image reconstruction algorithm in Compton cameras. Phys. Med. Biol., 67(15), 155009–15pp.
Abstract: Objective. To demonstrate the benefits of using an joint image reconstruction algorithm based on the List Mode Maximum Likelihood Expectation Maximization that combines events measured in different channels of information of a Compton camera. Approach. Both simulations and experimental data are employed to show the algorithm performance. Main results. The obtained joint images present improved image quality and yield better estimates of displacements of high-energy gamma-ray emitting sources. The algorithm also provides images that are more stable than any individual channel against the noisy convergence that characterizes Maximum Likelihood based algorithms. Significance. The joint reconstruction algorithm can improve the quality and robustness of Compton camera images. It also has high versatility, as it can be easily adapted to any Compton camera geometry. It is thus expected to represent an important step in the optimization of Compton camera imaging.
|
Borja-Lloret, M., Barrientos, L., Bernabeu, J., Lacasta, C., Muñoz, E., Ros, A., et al. (2023). Influence of the background in Compton camera images for proton therapy treatment monitoring. Phys. Med. Biol., 68(14), 144001–16pp.
Abstract: Objective. Background events are one of the most relevant contributions to image degradation in Compton camera imaging for hadron therapy treatment monitoring. A study of the background and its contribution to image degradation is important to define future strategies to reduce the background in the system. Approach. In this simulation study, the percentage of different kinds of events and their contribution to the reconstructed image in a two-layer Compton camera have been evaluated. To this end, GATE v8.2 simulations of a proton beam impinging on a PMMA phantom have been carried out, for different proton beam energies and at different beam intensities. Main results. For a simulated Compton camera made of Lanthanum (III) Bromide monolithic crystals, coincidences caused by neutrons arriving from the phantom are the most common type of background produced by secondary radiations in the Compton camera, causing between 13% and 33% of the detected coincidences, depending on the beam energy. Results also show that random coincidences are a significant cause of image degradation at high beam intensities, and their influence in the reconstructed images is studied for values of the time coincidence windows from 500 ps to 100 ns. Significance. Results indicate the timing capabilities required to retrieve the fall-off position with good precision. Still, the noise observed in the image when no randoms are considered make us consider further background rejection methods.
|
Hueso-Gonzalez, F., Berthold, J., Wohlfahrt, P., Bortfeld, T., Khamfongkhruea, C., Tattenberg, S., et al. (2024). Inter-center comparison of proton range verification prototypes with an anthropomorphic head phantom. Phys. Med. Biol., 69(22), 225010–14pp.
Abstract: Objective. To compare in reproducible and equalized conditions the performance of two independent proton range verification systems based on prompt gamma-ray detectors from two different proton therapy centers. Approach. An anthropomorphic head phantom with calibrated stopping power, serving as ground truth, was irradiated with comparable treatment plans, spot positions and energies in both facilities. Clinical beam current, tumor contour and dose were used. The absolute range measurement was compared to the expected value according to the ground truth. The statistical precision was assessed by repeating each measurement ten times. Sensitivity to relative range shifts was evaluated by introducing 2 mm and 5 mm plastic slabs on half of the field. Main results. The resulting absolute range accuracy was within 2.4 mm in all cases. Relative range shifts were detected with deviations lower than 14%. Significance. The performance of both systems was deemed worthy of clinical application for the detection of range deviations. This study represents the first comparison of independent prompt gamma-ray-based proton range verification systems under equalized conditions with realistic treatment fields and beam currents.
|