toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gorkavenko, V.; Jashal, B.K.; Kholoimov, V.; Kyselov, Y.; Mendoza, D.; Ovchynnikov, M.; Oyanguren, A.; Svintozelskyi, V.; Zhuo, J.H. url  doi
openurl 
  Title LHCb potential to discover long-lived new physics particles with lifetimes above 100 ps Type Journal Article
  Year 2024 Publication (down) European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 84 Issue 6 Pages 608 - 15pp  
  Keywords  
  Abstract For years, it has been believed that the main LHC detectors can play only a limited role of a lifetime frontier experiment exploring the parameter space of long-lived particles (LLPs)-hypothetical particles with tiny couplings to the Standard Model. This paper demonstrates that the LHCb experiment may become a powerful lifetime frontier experiment if it uses the new Downstream algorithm reconstructing tracks that do not allow hits in the LHCb vertex tracker. In particular, for many LLP scenarios, LHCb may be as sensitive as the proposed experiments beyond the main LHC detectors for various LLP models, including heavy neutral leptons, dark scalars, dark photons, and axion-like particles.  
  Address [Gorkavenko, Volodymyr; Kholoimov, Valerii; Kyselov, Yehor; Svintozelskyi, Volodymyr] Taras Shevchenko Natl Univ Kyiv, Kiev, Ukraine, Email: gorkavol@gmail.com;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001246005200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6145  
Permanent link to this record
 

 
Author Baeza-Ballesteros, J.; Donini, A.; Molina-Terriza, G.; Monrabal, F.; Simon, A. url  doi
openurl 
  Title Towards a realistic setup for a dynamical measurement of deviations from Newton's 1/r2 law: the impact of air viscosity Type Journal Article
  Year 2024 Publication (down) European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 84 Issue 6 Pages 596 - 20pp  
  Keywords  
  Abstract A novel experimental setup to measure deviations from the 1/r(2) distance dependence of Newtonian gravity was proposed in Donini and Marimon (Eur Phys J C 76:696, 2016). The underlying theoretical idea was to study the orbits of a microscopically-sized planetary system composed of a “Satellite”, with mass m(S) similar to O(10-9) g, and a “Planet”, with mass M-P similar to O(10-5) g at an initial distance of hundreds of microns. The detection of precession of the orbit in this system would be an unambiguous indication of a central potential with terms that scale with the distance differently from 1/r. This is a huge advantage with respect to the measurement of the absolute strength of the attraction between two bodies, as most electrically-induced background potentials do indeed scale as 1/r. Detection of orbit precession is unaffected by these effects, allowing for better sensitivities. In Baeza-Ballesteros et al. (Eur Phys J C 82:154, 2022), the impact of other subleading backgrounds that may induce orbit precession, such as, e.g., the electrical Casimir force or general relativity, was studied in detail. It was found that the proposed setup could test Yukawa-like corrections, alpha x exp(-r/lambda), to the 1/r potential with couplings as low as alpha similar to 10(-2) for distances as small as lambda similar to 10 μm, improving by roughly an order of magnitude present bounds. In this paper, we start to move from a theoretical study of the proposal to a more realistic implementation of the experimental setup. As a first step, we study the impact of air viscosity on the proposed setup and see how the setup should be modified in order to preserve the theoretical sensitivity achieved in Donini and Marimon (2016) and Baeza-Ballesteros et al. (2022).  
  Address [Baeza-Ballesteros, J.; Donini, A.] Univ Valencia, Inst Fis Corpuscular, CSIC, Calle Catedrat Jose Beltran Martinez 2, Paterna 46980, Spain, Email: jorge.baeza@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001243830900015 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6156  
Permanent link to this record
 

 
Author Ferrer-Sanchez, A.; Martin-Guerrero, J.; Ruiz de Austri, R.; Torres-Forne, A.; Font, J.A. url  doi
openurl 
  Title Gradient-annihilated PINNs for solving Riemann problems: Application to relativistic hydrodynamics Type Journal Article
  Year 2024 Publication (down) Computer Methods in Applied Mechanics and Engineering Abbreviated Journal Comput. Meth. Appl. Mech. Eng.  
  Volume 424 Issue Pages 116906 - 18pp  
  Keywords Riemann problem; Euler equations; Machine learning; Neural networks; Relativistic hydrodynamics  
  Abstract We present a novel methodology based on Physics-Informed Neural Networks (PINNs) for solving systems of partial differential equations admitting discontinuous solutions. Our method, called Gradient-Annihilated PINNs (GA-PINNs), introduces a modified loss function that forces the model to partially ignore high-gradients in the physical variables, achieved by introducing a suitable weighting function. The method relies on a set of hyperparameters that control how gradients are treated in the physical loss. The performance of our methodology is demonstrated by solving Riemann problems in special relativistic hydrodynamics, extending earlier studies with PINNs in the context of the classical Euler equations. The solutions obtained with the GA-PINN model correctly describe the propagation speeds of discontinuities and sharply capture the associated jumps. We use the relative l(2) error to compare our results with the exact solution of special relativistic Riemann problems, used as the reference ''ground truth'', and with the corresponding error obtained with a second-order, central, shock-capturing scheme. In all problems investigated, the accuracy reached by the GA-PINN model is comparable to that obtained with a shock-capturing scheme, achieving a performance superior to that of the baseline PINN algorithm in general. An additional benefit worth stressing is that our PINN-based approach sidesteps the costly recovery of the primitive variables from the state vector of conserved variables, a well-known drawback of grid-based solutions of the relativistic hydrodynamics equations. Due to its inherent generality and its ability to handle steep gradients, the GA-PINN methodology discussed in this paper could be a valuable tool to model relativistic flows in astrophysics and particle physics, characterized by the prevalence of discontinuous solutions.  
  Address [Ferrer-Sanchez, Antonio; Martin-Guerrero, JoseD.] ETSE UV, Elect Engn Dept, IDAL, Avgda Univ S-N, Valencia 46100, Spain, Email: Antonio.Ferrer-Sanchez@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-7825 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001221797400001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6126  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva