|   | 
Details
   web
Records
Author Goasduff, A.; Valiente-Dobon, J.J.; Lunardi, S.; Haas, F.; Gadea, A.; de Angelis, G.; Bazzacco, D.; Courtin, S.; Farnea, E.; Gottardo, A.; Michelagnoli, C.; Mengoni, D.; Napoli, D.R.; Recchia, F.; Sahin, E.; Ur, C.A.
Title Counting rate measurements for lifetime experiments using the RDDS method with the new generation gamma-ray array AGATA Type Journal Article
Year 2014 Publication (up) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 758 Issue Pages 1-3
Keywords Lifetime measurement; gamma spectroscopy; Counting rate
Abstract The differential Recoil Distance Doppler Shift (RDDS) method after multinucleon transfer (MNT) reactions to measure lifetimes of excited states in neutron-rich nuclei requires the use of a thick energy degrader for the recoiling ejectiles that are then detected in a spectrometer. This type of measurements greatly benefits from the use of the new generation segmented gamma-ray detectors, such as the AGATA demonstrator which offers unprecedented energy and angular resolutions. In order to make an optimized choice of the material and the thickness of the degrader for lifetime measurements using the RODS method after MNT, an experiment has been performed with the AGATA demonstrator. Counting rate measurements for different degraders are presented.
Address [Goasduff, A.; Haas, F.; Courtin, S.] Univ Strasbourg, IPHC, F-67037 Strasbourg, France, Email: Alain.Goasduff@csnsm.in2p3.fr
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000338348900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1829
Permanent link to this record
 

 
Author Mengoni, D.; Duenas, J.A.; Assie, M.; Boiano, C.; John, P.R.; Aliaga, R.J.; Beaumel, D.; Capra, S.; Gadea, A.; Gonzales, V.; Gottardo, A.; Grassi, L.; Herrero-Bosch, V.; Houdy, T.; Martel, I.; Parkar, V.V.; Perez-Vidal, R.M.; Pullia, A.; Sanchis, E.; Triossi, A.; Valiente-Dobon, J.J.
Title Digital pulse-shape analysis with a TRACE early silicon prototype Type Journal Article
Year 2014 Publication (up) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 764 Issue Pages 241-246
Keywords Silicon detector; Light-charged particles; Digital pulse shape analysis; Particle identification; Gamma-ray spectroscopy
Abstract A highly segmented silicon-pad detector prototype has been tested to explore the performance of the digital pulse shape analysis in the discrimination of the particles reaching the silicon detector. For the first time a 200 tun thin silicon detector, grown using an ordinary floating zone technique, has been shown to exhibit a level discrimination thanks to the fine segmentation. Light-charged particles down to few MeV have been separated, including their punch-through. A coaxial HPGe detector in time coincidence has further confirmed the quality of the particle discrimination.
Address [Mengoni, D.; John, P. R.; Grassi, L.] Univ Padua, Dipartimento Fis & Astron, I-35131 Padua, Italy
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000341987000030 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1929
Permanent link to this record
 

 
Author Lalovic, N.; Louchart, C.; Michelagnoli, C.; Perez-Vidal, R.M.; Ralet, D.; Gerl, J.; Rudolph, D.; Arici, T.; Bazzacco, D.; Clement, E.; Gadea, A.; Kojouharov, I.; Korichi, A.; Labiche, M.; Ljungvall, J.; Lopez-Martens, A.; Nyberg, J.; Pietralla, N.; Pietri, S.; Stezowski, O.
Title Performance of the AGATA gamma-ray spectrometer in the PreSPEC set-up at GSI Type Journal Article
Year 2016 Publication (up) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 806 Issue Pages 258-266
Keywords Gamma-ray spectroscopy; Gamma-ray tracking; Nuclear structure; Pulse shape analysis; HPGe detectors
Abstract In contemporary nuclear physics, the European Advanced GAmma Tracking Array (AGATA) represents a crucial detection system for cutting-edge nuclear structure studies. AGATA consists of highly segmented high-purity germanium crystals and uses the pulse-shape analysis technique to determine both the position and the energy of the y-ray interaction points in the crystals. It is the tracking algorithms that deploy this information and enable insight into the sequence of interactions, providing information on the full or partial absorption of the 7 ray. A series of dedicated performance measurements for an AGATA set-up comprising 21 crystals is described. This set-up was used within the recent PreSPEC-AGATA experimental campaign at the GSI Helmholtzzentrum fur Schwerionenforschung. Using the radioactive sources Co-56, Co-60 and Eu-152, absolute and normalized efficiencies and the peak-to-total of the array were measured. These quantities are discussed using different data analysis procedures. The quality of the pulse-shape analysis and the tracking algorithm are evaluated. The agreement between the experimental data and the Geant4 simulations is also investigated.
Address [Lalovic, N.; Rudolph, D.] Lund Univ, Dept Phys, SE-22100 Lund, Sweden, Email: Natasa.Lalovic@nuclear.lu.se
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000364856100035 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2463
Permanent link to this record
 

 
Author Lauritsen, T. et al; Perez-Vidal, R.M.
Title Characterization of a gamma-ray tracking array: A comparison of GRETINA and Gammasphere using a Co-60 source Type Journal Article
Year 2016 Publication (up) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 836 Issue Pages 46-56
Keywords Segmented germanium detectors; Efficiency measurements; gamma-Ray tracking; Gammasphere; GRETINA; GRETA; gamma-Ray spectroscopy; Nuclear structure
Abstract In this paper; we provide a formalism for the characterization of tracking arrays with emphasis on the proper corrections required to extract their photopeak efficiencies and peak-to-total ratios. The methods are first applied to Gammasphere, a well characterized 4 pi array based on the principle of Compton suppression, and subsequently to GRETINA. The tracking efficiencies are then discussed and some guidelines as to what clustering angle to use in the tracking algorithm are presented. It was possible, using GEANT4 simulations, to scale the measured efficiencies up to the expected values for the full 4 pi implementation of GRETA.
Address [Lauritsen, T.; Zhu, S.; Ayangeakaa, A. D.; Carpenter, M. P.; Greene, J. P.; Janssens, R. V. F.; Khoo, T. L.; Seweryniak, D.] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA, Email: torben@anl.gov
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000385601400007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2830
Permanent link to this record
 

 
Author Guadilla, V. et al; Algora, A.; Tain, J.L.; Agramunt, J.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Orrigo, S.E.A.; Rubio, B.; Valencia, E.
Title Characterization of a cylindrical plastic beta-detector with Monte Carlo simulations of optical photons Type Journal Article
Year 2017 Publication (up) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 854 Issue Pages 134-138
Keywords Plastic scintillators; Monte Carlo simulations; Total absorption spectroscopy; Optical photons
Abstract In this work we report on the Monte Carlo study performed to understand and reproduce experimental measurements of a new plastic beta-detector with cylindrical geometry. Since energy deposition simulations differ from the experimental measurements for such a geometry, we show how the simulation of production and transport of optical photons does allow one to obtain the shapes of the experimental spectra. Moreover, taking into account the computational effort associated with this kind of simulation, we develop a method to convert the simulations of energy deposited into light collected, depending only on the interaction point in the detector. This method represents a useful solution when extensive simulations have to be done, as in the case of the calculation of the response function of the spectrometer in a total absorption gamma-ray spectroscopy analysis.
Address [Guadilla, V.; Algora, A.; Tain, J. L.; Agramunt, J.; Gelletly, W.; Jordan, D.; Monserrate, M.; Montaner-Piza, A.; Orrigo, S. E. A.; Rubio, B.; Valencia, E.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: victor.guadilla@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000398869100018 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3052
Permanent link to this record