|   | 
Details
   web
Records
Author Alimena, J. et al; Hirsch, M.; Mamuzic, J.; Mitsou, V.A.; Santra, A.
Title Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider Type Journal Article
Year 2020 Publication (up) Journal of Physics G Abbreviated Journal J. Phys. G
Volume 47 Issue 9 Pages 090501 - 226pp
Keywords beyond the Standard Model; long-lived particles; Large Hadron Collider; high-luminosity LHC; collider phenomenology; high-energy collider experiments
Abstract Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton-proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments-as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER-to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.
Address [Alimena, Juliette; Hill, Christopher S.] Ohio State Univ, Dept Phys, 191 W Woodruff Ave, Columbus, OH 43210 USA, Email: juliette.alimena@cern.ch;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000570614200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4535
Permanent link to this record
 

 
Author Feng, J.L. et al; Garcia Soto, A.; Hirsch, M.
Title The Forward Physics Facility at the High-Luminosity LHC Type Journal Article
Year 2023 Publication (up) Journal of Physics G Abbreviated Journal J. Phys. G
Volume 50 Issue 3 Pages 030501 - 410pp
Keywords Forward Physics Facility; Large Hadron Collider; new particle searches; neutrinos; QCD; astroparticle physics; dark matter
Abstract High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential.
Address [Feng, Jonathan L.; Tsai, Yu-Dai; Bian, Jianming; Casper, David W.; Fieg, Max; Huang, Fei; Kuo, Jui-Lin; Wu, Wenjie] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA, Email: jlf@uci.edu
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000934195400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5491
Permanent link to this record
 

 
Author de Campos, F.; Eboli, O.J.P.; Hirsch, M.; Magro, M.B.; Porod, W.; Restrepo, D.; Valle, J.W.F.
Title Probing neutrino oscillations in supersymmetric models at the Large Hadron Collider Type Journal Article
Year 2010 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 82 Issue 7 Pages 075002 - 8pp
Keywords
Abstract The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.
Address [de Campos, F.] Univ Estadual Paulista, Dept Quim & Fis, Guaratingueta, SP, Brazil, Email: camposc@feg.unesp.br
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000282570100004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 367
Permanent link to this record
 

 
Author Esteves, J.N.; Romao, J.C.; Hirsch, M.; Staub, F.; Porod, W.
Title Supersymmetric type-III seesaw mechanism: Lepton flavor violating decays and dark matter Type Journal Article
Year 2011 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 1 Pages 013003 - 21pp
Keywords
Abstract We study a supersymmetric version of the seesaw mechanism type III. The model consists of the minimal supersymmetric extension of the standard model particle content plus three copies of 24 superfields. The fermionic part of the SU(2) triplet contained in the 24 is responsible for the type-III seesaw, which is used to explain the observed neutrino masses and mixings. Complete copies of 24 are introduced to maintain gauge coupling unification. These additional states change the beta functions of the gauge couplings above the seesaw scale. Using minimal Supergravity boundary conditions, we calculate the resulting supersymmetric mass spectra at the electroweak scale using full 2-loop renormalization group equations. We show that the resulting spectrum can be quite different compared to the usual minimal Supergravity spectrum. We discuss how this might be used to obtain information on the seesaw scale from mass measurements. Constraints on the model space due to limits on lepton flavour violating decays are discussed. The main constraints come from the bounds on μ-> e gamma but there are also regions where the decay tau -> μgamma gives stronger constraints. We also calculate the regions allowed by the dark matter constraint. For the sake of completeness, we compare our results with those for the supersymmetric seesaw type II and, to some extent, with type I.
Address [Esteves, J. N.; Romao, J. C.] Inst Super Tecn, Dept Fis, P-1049001 Lisbon, Portugal, Email: joaomest@cftp.ist.utl.pt
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000286765100002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 583
Permanent link to this record
 

 
Author Hirsch, M.; Morisi, S.; Peinado, E.; Valle, J.W.F.
Title Discrete dark matter Type Journal Article
Year 2010 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 82 Issue 11 Pages 116003 - 5pp
Keywords
Abstract We propose a new motivation for the stability of dark matter (DM). We suggest that the same non-Abelian discrete flavor symmetry which accounts for the observed pattern of neutrino oscillations, spontaneously breaks to a Z(2) subgroup which renders DM stable. The simplest scheme leads to a scalar doublet DM potentially detectable in nuclear recoil experiments, inverse neutrino mass hierarchy, hence a neutrinoless double beta decay rate accessible to upcoming searches, while theta(13) = 0 gives no CP violation in neutrino oscillations.
Address [Hirsch, M.; Morisi, S.; Peinado, E.; Vallex, J. W. F.] Univ Valencia, CSIC, AHEP Grp, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000286565700007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 521
Permanent link to this record
 

 
Author De Romeri, V.; Hirsch, M.; Malinsky, M.
Title Soft masses in supersymmetric SO(10) GUTs with low intermediate scales Type Journal Article
Year 2011 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 84 Issue 5 Pages 053012 - 15pp
Keywords
Abstract The specific shape of the squark, slepton and gaugino mass spectra, if measured with sufficient accuracy, can provide invaluable information not only about the dynamics underpinning their origin at some very high scale such as the unification scale M(G), but also about the intermediate scale physics encountered throughout their renormalization group equations evolution down to the energy scale accessible for the LHC. In this work, we study general features of the TeV scale soft supersymmetry breaking parameters stemming from a generic mSugra configuration within certain classes of supersymmetry SO(10) GUTs with different intermediate symmetries below M(G). We show that particular combinations of soft masses show characteristic deviations from the mSugra limit in different models and thus, potentially, allow to distinguish between these, even if the new intermediate scales are outside the energy range probed at accelerators. We also compare our results to those obtained for the three minimal seesaw models with mSugra boundary conditions and discuss the main differences between those and our SO(10) based models.
Address [De Romeri, V; Hirsch, M; Malinsky, M] Univ Valencia, AHEP Grp, Inst Fis Corpuscular CSIC, E-46071 Valencia, Spain, Email: deromeri@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000295267700001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 777
Permanent link to this record
 

 
Author Dib, C.; Helo, J.C.; Hirsch, M.; Kovalenko, S.; Schmidt, I.
Title Heavy sterile neutrinos in tau decays and the MiniBooNE anomaly Type Journal Article
Year 2012 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 85 Issue 1 Pages 011301 - 4pp
Keywords
Abstract Current results of the MiniBooNE experiment show excess events that indicate neutrino oscillations, but only if one goes beyond the standard 3 family scenario. Recently a different explanation of the events has been given, not in terms of oscillations but by the production and decay of a massive sterile neutrino with large transition magnetic moment. We study the effect of such a sterile neutrino in the rare decays tau(-) -> mu(-)mu(+)pi(-)nu and tau(-) -> mu(-)mu(+)e(-)nu nu. We find that searches for these decays, featuring displaced vertices between the mu(-) and the other charged particles, constitute reliable tests for the existence of the sterile neutrino proposed to explain the MiniBooNE anomaly. These searches could be done with already existing experimental data.
Address [Dib, Claudio; Carlos Helo, Juan; Kovalenko, Sergey; Schmidt, Ivan] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso, Valparaiso, Chile
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000298925800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 869
Permanent link to this record
 

 
Author Hirsch, M.; Staub, F.; Vicente, A.
Title Enhancing l(i) -> 3l(j) with the Z(0)-penguin Type Journal Article
Year 2012 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 85 Issue 11 Pages 113013 - 5pp
Keywords
Abstract Lepton flavor violation has been observed in neutrino oscillations. For charged lepton flavor violation decays only upper limits are known, but sizable branching ratios are expected in many neutrino mass models. High-scale models, such as the classical supersymmetric seesaw, usually predict that decays l(i) -> 3l(j) are roughly a factor alpha smaller than the corresponding decays l(i) -> l(j)gamma. Here we demonstrate that the Z(0)-penguin diagram can give an enhancement for decays l(i) -> 3l(j) in many extensions of the minimal supersymmetric standard model (MSSM). We first discuss why the Z(0)-penguin is not dominant in the MSSM with seesaw and show that much larger contributions from the Z(0)-penguin are expected in general. We then demonstrate the effect numerically in two example models, namely, the supersymmetric inverse seesaw and R-parity violating supersymmetry.
Address [Hirsch, M.] Univ Valencia Edificio Inst Paterna, CSIC, AHEP Grp, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000305680800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1075
Permanent link to this record
 

 
Author Campos, F.; Eboli, O.J.P.; Magro, M.B.; Porod, W.; Restrepo, D.; Das, S.P.; Hirsch, M.; Valle, J.W.F.
Title Probing neutralino properties in minimal supergravity with bilinear R-parity violation Type Journal Article
Year 2012 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 7 Pages 075001 - 8pp
Keywords
Abstract Supersymmetric models with bilinear R-parity violation can account for the observed neutrino masses and mixing parameters indicated by neutrino oscillation data. We consider minimal supergravity versions of bilinear R-parity violation where the lightest supersymmetric particle is a neutralino. This is unstable, with a large enough decay length to be detected at the CERN Large Hadron Collider. We analyze the Large Hadron Collider potential to determine the lightest supersymmetric particle properties, such as mass, lifetime and branching ratios, and discuss their relation to neutrino properties.
Address [de Campos, F.] Univ Estadual Paulista, Dept Fis & Quim, BR-12516410 Sao Paulo, Brazil, Email: camposc@feg.unesp.br;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000309346800011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1167
Permanent link to this record
 

 
Author Hirsch, M.; Reichert, L.; Porod, W.; Staub, F.
Title Phenomenology of a supersymmetric U(1)(B-L) x U(1)(R) extension of the standard model with inverse seesaw mechanism Type Journal Article
Year 2012 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 9 Pages 093018 - 26pp
Keywords
Abstract We discuss the minimal supersymmetric U(1)(B-L) X U(1)(R) extension of the standard model. Gauge couplings unify as in the minimal supersymmetric standard model (MSSM), even if the scale of U(1)(B-L) X U(1)(R) breaking is as low as order TeV and the model can be embedded into a SO(10) grand unified theory. The phenomenology of the model differs in some important aspects from the MSSM, leading potentially to rich phenomenology at the LHC. It predicts more light Higgs states and the mostly left CP-even Higgs having a mass that easily reaches 125 GeV, with no constraints on the supersymmetry spectrum. Right sneutrinos can be the lightest supersymmetric particle, changing all dark matter constraints on supersymmetry parameter space. The model has seven neutralinos, and squark/gluino decay chains involve more complicated cascades than in the MSSM. We also briefly discuss low-energy and accelerator constraints on the model, where the most important limits come from recent Z' searches at the LHC and upper limits on lepton flavor violation.
Address [Hirsch, M.; Reichert, L.; Porod, W.] Univ Valencia, CSIC, Inst Fis Corpuscular, Astroparticles & High Energy Phys Grp, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000311142800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1221
Permanent link to this record