toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mostajeran, M.; Sorolla, E.; Rakova, E.; Gimeno, B. doi  openurl
  Title Space charge and two-sheet model in multipactor Type Journal Article
  Year 2024 Publication (up) European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus  
  Volume 139 Issue 3 Pages 256 - 13pp  
  Keywords  
  Abstract The electron cloud populated by a multipactor within two emissive parallel plates was modeled by two thin sheets of charge, and for the first time the equations of the particle motion for this two-sheet system were derived taking into account space charge effects. The electron population growth in multipacting process was then simulated with the code developed on the base of these equations. It was found that the mutual repulsion between the sheets, i.e., space charge effects, results in the increasing of charge in one of the sheets and the loss of charge in the other due to the different growth rates. This process eventually comes to the saturation of one sheet and the dissappearence of the other.  
  Address [Mostajeran, M.] Yazd Univ, Fac Phys, POB 89195-741, Yazd, Iran, Email: mostajeran@yazd.ac.ir;  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-5444 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001184318100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6014  
Permanent link to this record
 

 
Author Nacher, E.; Briz, J.A.; Nerio, A.N.; Perea, A.; Tavora, V.G.; Tengblad, O.; Ciemala, M.; Cieplicka-Orynczak, N.; Maj, A.; Mazurek, K.; Olko, P.; Zieblinski, M.; Borge, M.J.G. url  doi
openurl 
  Title Characterization of a novel proton-CT scanner based on Silicon and LaBr3(Ce) detectors Type Journal Article
  Year 2024 Publication (up) European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus  
  Volume 139 Issue 5 Pages 404 - 9pp  
  Keywords  
  Abstract Treatment planning systems at proton-therapy centres entirely use X-ray computed tomography (CT) as primary imaging technique to infer the proton treatment doses to tumour and healthy tissues. However, proton stopping powers in the body, as derived from X-ray images, suffer from important proton-range uncertainties. In order to reduce this uncertainty in range, one could use proton-CT images instead. The main goal of this work is to test the capabilities of a newly-developed proton-CT scanner, based on the use of a set of tracking detectors and a high energy resolution scintillator for the residual energy of the protons. Different custom-made phantoms were positioned at the field of view of the scanner and were irradiated with protons at the CCB proton-therapy center in Krakow. We measured with the phantoms at different angles and produced sinograms that were used to obtain reconstructed images by Filtered Back-Projection. The obtained images were used to determine the capabilities of our scanner in terms of spatial resolution and proton Relative Stopping Power (RSP) mapping and validate its use as proton-CT scanner. The results show that the scanner can produce medium-high quality images, with spatial resolution better than 2 mm in radiography, below 3 mm in tomography and resolving power in the RSP comparable to other state-of-the-art pCT scanners.  
  Address [Nacher, E.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46980, Spain, Email: enrique.nacher@csic.es  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-5444 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001218502700005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6123  
Permanent link to this record
 

 
Author D'Auria, G. et al; Gonzalez-Iglesias, D.; Gimeno, B.; Pereira, D.E. doi  openurl
  Title The CompactLight Design Study Type Journal Article
  Year 2024 Publication (up) European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.  
  Volume Issue Pages 1-208  
  Keywords  
  Abstract CompactLight is a Design Study funded by the European Union under the Horizon 2020 research and innovation funding programme, with Grant Agreement No. 777431. CompactLight was conducted by an International Collaboration of 23 international laboratories and academic institutions, three private companies, and five third parties. The project, which started in January 2018 with a duration of 48 months, aimed to design an innovative, compact, and cost-effective hard X-ray FEL facility complemented by a soft X-ray source to pave the road for future compact accelerator-based facilities. The result is an accelerator that can be operated at up to 1 kHz pulse repetition rate, beyond today's state of the art, using the latest concepts for high brightness electron photoinjectors, very high gradient accelerating structures in X-band, and novel short-period undulators. In this report, we summarize the main deliverable of the project: the CompactLight Conceptual Design Report, which overviews the current status of the design and addresses the main technological challenges.  
  Address [D'Auria, G.; Danailov, M.; Mitri, S. Di; Ferianis, M.; Gioppo, R.; Rochow, R.; Tabacco, C.; Zangrando, M.] Elettra Sincrotrone Trieste SCpA, AREA Sci Pk, I-34149 Trieste, Italy, Email: gerardo.dauria@elettra.eu  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1951-6355 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001198683900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6122  
Permanent link to this record
 

 
Author Martinez-Reviriego, P.; Esperante, D.; Grudiev, A.; Gimeno, B.; Blanch, C.; Gonzalez-Iglesias, D.; Fuster-Martinez, N.; Martin-Luna, P.; Martinez, E.; Menendez, A.; Fuster, J. url  doi
openurl 
  Title Dielectric assist accelerating structures for compact linear accelerators of low energy particles in hadrontherapy treatments Type Journal Article
  Year 2024 Publication (up) Frontiers in Physics Abbreviated Journal Front. Physics  
  Volume 12 Issue Pages 1345237 - 12pp  
  Keywords dielectric assist accelerating (DAA) structures; radio frequency (RF); LINAC; hadrontherapy; standing wave  
  Abstract Dielectric Assist Accelerating (DAA) structures based on ultralow-loss ceramic are being studied as an alternative to conventional disk-loaded copper cavities. This accelerating structure consists of dielectric disks with irises arranged periodically in metallic structures working under the TM02-pi mode. In this paper, the numerical design of an S-band DAA structure for low beta particles, such as protons or carbon ions used for Hadrontherapy treatments, is shown. Four dielectric materials with different permittivity and loss tangent are studied as well as different particle velocities. Through optimization, a design that concentrates most of the RF power in the vacuum space near the beam axis is obtained, leading to a significant reduction of power loss on the metallic walls. This allows to fabricate cavities with an extremely high quality factor, over 100,000, and shunt impedance over 300 M omega/m at room temperature. During the numerical study, the design optimization has been improved by adjusting some of the cell parameters in order to both increase the shunt impedance and reduce the peak electric field in certain locations of the cavity, which can lead to instabilities in its normal functioning.  
  Address [Martinez-Reviriego, Pablo; Esperante, Daniel; Gimeno, Benito; Blanch, Cesar; Gonzalez-Iglesias, Daniel; Fuster-Martinez, Nuria; Martin-Luna, Pablo; Martinez, Eduardo; Menendez, Abraham; Fuster, Juan] CSIC Univ Valencia, Inst Fis Corpuscular IFIC, Paterna, Spain, Email: pablo.martinez.reviriego@ific.uv.es  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001162373700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5953  
Permanent link to this record
 

 
Author Olivares Herrador, J.; Latina, A.; Aksoy, A.; Fuster Martinez, N.; Gimeno, B.; Esperante, D. doi  openurl
  Title Implementation of the beam-loading effect in the tracking code RF-track based on a power-diffusive model Type Journal Article
  Year 2024 Publication (up) Frontiers in Physics Abbreviated Journal Front. Physics  
  Volume 12 Issue Pages 1348042 - 11pp  
  Keywords beam loading; LINAC; energy loss; tracking simulation; transient; high-intensity beam; CLEAR; gradient reduction  
  Abstract The need to achieve high energies in particle accelerators has led to the development of new accelerator technologies, resulting in higher beam intensities and more compact devices with stronger accelerating fields. In such scenarios, beam-loading effects occur, and intensity-dependent gradient reduction affects the accelerated beam as a consequence of its interaction with the surrounding cavity. In this study, a power-diffusive partial differential equation is derived to account for this effect. Its numerical resolution has been implemented in the tracking code RF-Track, allowing the simulation of apparatuses where transient beam loading plays an important role. Finally, measurements of this effect have been carried out in the CERN Linear Electron Accelerator for Research (CLEAR) facility at CERN, finding good agreement with the RF-Track simulations.  
  Address [Olivares Herrador, Javier; Latina, Andrea; Aksoy, Avni] CERN, Meyrin, Switzerland, Email: javier.olivares.herrador@cern.ch  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001193122800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6019  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva