|   | 
Details
   web
Records
Author Gariazzo, S.; Gerbino, M.; Brinckmann, T.; Lattanzi, M.; Mena, O.; Schwetz, T.; Choudhury, S.R.; Freese, K.; Hannestad, S.; Ternes, C.A.; Tortola, M.
Title Neutrino mass and mass ordering: no conclusive evidence for normal ordering Type Journal Article
Year 2022 Publication (down) Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 010 - 18pp
Keywords Bayesian reasoning; neutrino properties; neutrino masses from cosmology; cosmological parameters from CMBR
Abstract The extraction of the neutrino mass ordering is one of the major challenges in particle physics and cosmology, not only for its implications for a fundamental theory of mass generation in nature, but also for its decisive role in the scale of future neutrinoless double beta decay experimental searches. It has been recently claimed that current oscillation, beta decay and cosmological limits on the different observables describing the neutrino mass parameter space provide robust decisive Bayesian evidence in favor of the normal ordering of the neutrino mass spectrum [1]. We further investigate these strong claims using a rich and wide phenomenology, with different sampling techniques of the neutrino parameter space. Contrary to the findings of Jimenez et al. [1], no decisive evidence for the normal mass ordering is found. Neutrino mass ordering analyses must rely on priors and parameterizations that are ordering-agnostic: robust results should be regarded as those in which the preference for the normal neutrino mass ordering is driven exclusively by the data, while we find a difference of up to a factor of 33 in the Bayes factors among the different priors and parameterizations exploited here. An ordering-agnostic prior would be represented by the case of parameterizations sampling over the two mass splittings and a mass scale, or those sampling over the individual neutrino masses via normal prior distributions only. In this regard, we show that the current significance in favor of the normal mass ordering should be taken as 2.7 sigma (i.e. moderate evidence), mostly driven by neutrino oscillation data. Let us stress that, while current data favor NO only mildly, we do not exclude the possibility that this may change in the future. Eventually, upcoming oscillation and cosmological data may (or may not) lead to a more significant exclusion of IO.
Address [Gariazzo, Stefano; Ternes, Christoph A.] Ist Nazl Fis Nucl INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000928487200002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5477
Permanent link to this record
 

 
Author Baker, M.J.; Bordes, J.; Hong-Mo, C.; Tsun, T.S.
Title Developing the Framed Standard Model Type Journal Article
Year 2012 Publication (down) International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 27 Issue 17 Pages 1250087 - 45pp
Keywords Quantum field theory; CP violation; mixing and fermion masses
Abstract The framed standard model (FSM) suggested earlier, which incorporates the Higgs field and three fermion generations as part of the framed gauge theory (FGT) structure, is here developed further to show that it gives both quarks and leptons hierarchical masses and mixing matrices akin to what is experimentally observed. Among its many distinguishing features which lead to the above results are (i) the vacuum is degenerate under a global su(3) symmetry which plays the role of fermion generations, (ii) the fermion mass matrix is “universal,” rank-one and rotates (changes its orientation in generation space) with changing scale mu, (iii) the metric in generation space is scale-dependent too, and in general nonflat, (iv) the theta-angle term in the quantum chromodynamics (QCD) action of topological origin gets transformed into the CP-violating phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix for quarks, thus offering at the same time a solution to the strong CP problem.
Address [Baker, Michael J.; Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: michael.baker@uv.es;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000305621900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1061
Permanent link to this record
 

 
Author Baker, M.J.; Bordes, J.; Hong-Mo, C.; Tsun, T.S.
Title A comprehensive mechanism reproducing the mass and mixing parameters of quarks and leptons Type Journal Article
Year 2013 Publication (down) International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 28 Issue 16 Pages 1350070 - 29pp
Keywords CP phase; CKM matrix; PMNS matrix; fermion masses
Abstract It is shown that if, from the starting point of a universal rank-one mass matrix long favored by phenomenologists, one adds the assumption that it rotates (changes its orientation in generation space) with changing scale, one can reproduce, in terms of only six real parameters, all the 16 mass ratios and mixing parameters of quarks and leptons. Of these 16 quantities so reproduced, 10 for which data exist for direct comparison (i.e. the CKM elements including the CP-violating phase, the angles theta(12), theta(13), theta(23) in nu-oscillation, and the masses m(c), m(mu), m(e)) agree well with experiment, mostly to within experimental errors; four others (m(s), m(u), m(d), m(nu 2)), the experimental values for which can only be inferred, agree reasonably well; while two others (m(nu 1), delta(CP) for leptons), not yet measured experimentally, remain as predictions. In addition, one gets as bonuses, estimates for (i) the right-handed neutrino mass m(nu R) and (ii) the strong CP angle theta inherent in QCD. One notes in particular that the output value for sin(2) 2 theta(13) from the fit agrees very well with recent experiments. By inputting the current experimental value with its error, one obtains further from the fit two new testable constraints: (i) that theta(23) must depart from its “maximal” value: sin(2) 2 theta(23) similar to 0.935 +/- 0.021, (ii) that the CP-violating (Dirac) phase in the PMNS would be smaller than in the CKM matrix: of order only vertical bar sin delta(CP)vertical bar <= 0.31 if not vanishing altogether.
Address [Baker, Michael J.; Bordes, Jose] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: michael.baker@uv.es;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000321062900008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1482
Permanent link to this record
 

 
Author Farzan, Y.; Tortola, M.
Title Neutrino oscillations and non-standard Interactions Type Journal Article
Year 2018 Publication (down) Frontiers in Physics Abbreviated Journal Front. Physics
Volume 6 Issue Pages 10 - 34pp
Keywords neutrino oscillations; leptonic CP violation; non-standard neutrino interactions; neutrino masses; neutrino physics
Abstract Current neutrino experiments are measuring the neutrino mixing parameters with an unprecedented accuracy. The upcoming generation of neutrino experiments will be sensitive to subdominant neutrino oscillation effects that can in principle give information on the yet-unknown neutrino parameters: the Dirac CP-violating phase in the PMNS mixing matrix, the neutrino mass ordering and the octant of.23. Determining the exact values of neutrino mass and mixing parameters is crucial to test various neutrino models and flavor symmetries that are designed to predict these neutrino parameters. In the first part of this review, we summarize the current status of the neutrino oscillation parameter determination. We consider the most recent data from all solar neutrino experiments and the atmospheric neutrino data from Super-Kamiokande, IceCube, and ANTARES. We also implement the data from the reactor neutrino experiments KamLAND, Daya Bay, RENO, and Double Chooz as well as the long baseline neutrino data from MINOS, T2K, and NO.A. If in addition to the standard interactions, neutrinos have subdominant yet-unknown Non-Standard Interactions (NSI) with matter fields, extracting the values of these parameters will suffer from new degeneracies and ambiguities. We review such effects and formulate the conditions on the NSI parameters under which the precision measurement of neutrino oscillation parameters can be distorted. Like standard weak interactions, the non-standard interaction can be categorized into two groups: Charged Current (CC) NSI and Neutral Current (NC) NSI. Our focus will bemainly on neutral current NSI because it is possible to build a class of models that give rise to sizeable NC NSI with discernible effects on neutrino oscillation. These models are based on new U(1) gauge symmetry with a gauge boson of mass. 10 MeV. The UV complete model should be of course electroweak invariant which in general implies that along with neutrinos, charged fermions also acquire new interactions on which there are strong bounds. We enumerate the bounds that already exist on the electroweak symmetric models and demonstrate that it is possible to build viable models avoiding all these bounds. In the end, we review methods to test these models and suggest approaches to break the degeneracies in deriving neutrino mass parameters caused by NSI.
Address [Farzan, Yasaman] Inst Res Fundamental Sci, Sch Phys, Tehran, Iran, Email: mariam@ific.uv.es
Corporate Author Thesis
Publisher Frontiers Research Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000426198100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3502
Permanent link to this record
 

 
Author Cai, Y.; Herrero-Garcia, J.; Schmidt, M.A.; Vicente, A.; Volkas, R.R.
Title From the Trees to the Forest: A Review of Radiative Neutrino Mass Models Type Journal Article
Year 2017 Publication (down) Frontiers in Physics Abbreviated Journal Front. Physics
Volume 5 Issue Pages 63 - 56pp
Keywords neutrino masses; lepton flavor violation; lepton number violation; beyond the standard model; effective field theory; model building; LHC; dark matter
Abstract A plausible explanation for the lightness of neutrino masses is that neutrinos are massless at tree level, with their mass (typically Majorana) being generated radiatively at one or more loops. The new couplings, together with the suppression coming from the loop factors, imply that the new degrees of freedom cannot be too heavy (they are typically at the TeV scale). Therefore, in these models there are no large mass hierarchies and they can be tested using different searches, making their detailed phenomenological study very appealing. In particular, the new particles can be searched for at colliders and generically induce signals in lepton-flavor and lepton-number violating processes (in the case of Majorana neutrinos), which are not independent from reproducing correctly the neutrino masses and mixings. The main focus of the review is on Majorana neutrinos. We order the allowed theory space from three different perspectives: (i) using an effective operator approach to lepton number violation, (ii) by the number of loops at which the Weinberg operator is generated, (iii) within a given loop order, by the possible irreducible topologies. We also discuss in more detail some popular radiative models which involve qualitatively different features, revisiting their most important phenomenological implications. Finally, we list some promising avenues to pursue.
Address [Cai, Yi] Sun Yat Sen Univ, Sch Phys, Guangzhou, Guangdong, Peoples R China, Email: juan.herrero-garcia@coepp.org.au;
Corporate Author Thesis
Publisher Frontiers Research Foundation Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424x ISBN Medium
Area Expedition Conference
Notes WOS:000416908800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3393
Permanent link to this record