Feijoo, A., Dai, L. R., Abreu, L. M., & Oset, E. (2024). Correlation function for the Tbb state: Determination of the binding, scattering lengths, effective ranges, and molecular probabilities. Phys. Rev. D, 109(1), 016014–8pp.
Abstract: We perform a study of the (B*+B0), (BB+)-B-*0 correlation functions using an extension of the local hidden gauge approach which provides the interaction from the exchange of light vector mesons and gives rise to a bound state of these components in I = 0 with a binding energy of about 21 MeV. After that, we face the inverse problem of determining the low energy observables, scattering length and effective range for each channel, the possible existence of a bound state, and, if found, the couplings of such a state to each (B*+B0), (BB+)-B-*0 component as well as the molecular probabilities of each of the channels. We use the bootstrap method to determine these magnitudes and find that, with errors in the correlation function typical of present experiments, we can determine all these magnitudes with acceptable precision. In addition, the size of the source function of the experiment from where the correlation functions are measured can be also determined with a high precision.
|
Roca, L., Song, J., & Oset, E. (2024). Molecular pentaquarks with hidden charm and double strangeness. Phys. Rev. D, 109(9), 094005–8pp.
Abstract: We analyze theoretically the coupled-channel meson-baryon interaction with global flavor c<overline>cssn and c<overline>csss, where mesons are pseudoscalars or vectors, and baryons have JP = 1/2+ or 3/2+. The aim is to explore whether the nonlinear dynamics inherent in the unitarization process within coupled channels can dynamically generate double- and triple-strange pentaquark-type states (Pcss and Pcsss, respectively), for which there is no experimental evidence to date. We evaluate the s-wave scattering matrix by implementing unitarity in coupled channels, using potential kernels obtained from t-channel vector meson exchange. The required PPV and VVV vertices are obtained from Lagrangians derived through appropriate extensions of the local hidden gauge symmetry approach to the charm sector, while capitalizing on the symmetry of the spin and flavor wave function to evaluate the BBV vertex. We find four different poles in the double strange sector, some of them degenerate in spin. For the triple-strange channel, we find the meson-baryon interaction insufficient to generate a bound or resonance state through the unitary coupled-channel dynamics.
|
Bayar, M., Molina, R., Oset, E., Liu, M. Z., & Geng, L. S. (2024). Subtleties in triangle loops for Ds+ → ρ+ η → π+ π0 η in a0(980) production. Phys. Rev. D, 109(7), 076027–7pp.
Abstract: We address a general problem in the evaluation of triangle loops stemming from the consideration of the range of the interaction involved in some of the vertices, as well as the energy dependence of the width of some unstable particles in the loop. We find sizeable corrections from both effects. We apply that to a loop relevant to the D + s -> pi + pi 0 eta decay, and find reductions of about a factor of 4 in the mass distribution of invariant mass of the pi eta in the region of the a 0 ( 980 ) . The method used is based on the explicit analytical evaluation of the q 0 integration in the d 4 q loop integration, using Cauchy 's residues method, which at the same time offers an insight on the convergence of the integrals and the effect of form factors and cutoffs.
|
Xiao, C. W., Dias, J. M., Dai, L. R., Liang, W. H., & Oset, E. (2024). Triangle singularity in the J/ψ → ϕ π+ a−0(π−η) ,ϕ π− a+0(π+η) decays. Phys. Rev. D, 109(7), 074033–11pp.
Abstract: We study the J= psi -> phi pi + a 0 ( 980 ) – ( a – 0 -> pi – eta ) decay, evaluating the double mass distribution in terms of the pi – eta and pi + a – 0 invariant masses. We show that the pi – eta mass distribution exhibits the typical cusp structure of the a 0 ( 980 ) seen in recent high statistics experiments, and the pi + a – 0 spectrum shows clearly a peak around M inv ( pi + a – 0 ) = 1420 MeV, corresponding to a triangle singularity. When integrating over the two invariant masses we find a branching ratio for this decay of the order of 10 – 5 , which is easily accessible in present laboratories. We also call attention to the fact that the signal obtained is compatible with a bump experimentally observed in the eta pi + pi – mass distribution in the J= psi -> phi eta pi + pi – decay and encourage further analysis to extract from there the phi pi + a – 0 and phi pi – a + 0 decay modes.
|
Liang, W. H., Molina, R., & Oset, E. (2024). Ωc→π+(π0, η)πΞ*, π+(π0, η)K¯Σ* reactions and the two Ξ(1820) states. Phys. Rev. D, 110(3), 036005–9pp.
Abstract: We have studied the Omega c-* pi+(pi 0, + ( pi 0 , eta)pi Xi ) pi Xi and Omega c-* pi+(pi 0, + ( pi 0 , eta ) K Sigma decays, where the final pi Xi Xi or K Sigma Sigma comes from the decay of two resonances around the nominal Xi ( 1820 ) , which are generated from the interaction of coupled channels made of a pseudoscalar and a baryon of the decuplet. The pi Xi Xi mass distributions obtained in the six different reactions studied are quite different, and we single out four of them, which are free of a tree level contribution, showing more clearly the effect of the resonances. The lower mass resonance is clearly seen as a sharp peak, but the higher mass resonance manifests itself through an interference with the lower one that leads to a dip in the mass distribution around 1850 MeV. Such a feature is similar to the dip observed in the S- wave pi pi cross section around the 980 MeV coming from the interference of the f 0 ( 500 ) and f 0 ( 980 ) resonances. Its observation in coming upgrades of present facilities will shed light on the existence of these two resonances and their nature. On the other hand, when the Omega c-* pi+(pi 0, + ( pi 0 , eta ) K Sigma reactions are studied, both peaks are observed.
|