|   | 
Details
   web
Records
Author Bombacigno, F.; Boudet, S.; Montani, G.
Title Generalized Ashtekar variables for Palatini f(R) models Type Journal Article
Year 2021 Publication (up) Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 963 Issue Pages 115281 - 21pp
Keywords
Abstract We consider special classes of Palatini f(R) theories, featured by additional Loop Quantum Gravity inspired terms, with the aim of identifying a set of modified Ashtekar canonical variables, which still preserve the SU(2) gauge structure of the standard theory. In particular, we allow for affine connection to be endowed with torsion, which turns out to depend on the additional scalar degree affecting Palatini f( R) gravity, and in this respect we successfully construct a novel Gauss constraint. We analyze the role of the additional scalar field, outlining as it acquires a dynamical character by virtue of a non vanishing Immirzi parameter, and we describe some possible effects on the area operator stemming from such a revised theoretical framework. Finally, we compare our results with earlier studies in literature, discussing differences between metric and Palatini approaches. It is worth noting how the Hamiltonian turns out to be different in the two cases. The results can be reconciled when the analysis is performed in the Einstein frame.
Address [Bombacigno, Flavio] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, Valencia 46100, Spain, Email: flavio.bombacigno@ext.uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000613579500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4706
Permanent link to this record
 

 
Author Das, A.; Mandal, S.
Title Bounds on the triplet fermions in type-III seesaw and implications for collider searches Type Journal Article
Year 2021 Publication (up) Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 966 Issue Pages 115374 - 33pp
Keywords
Abstract Type-III seesaw is a simple extension of the Standard Model (SM) with the SU(2)(L) triplet fermion with zero hypercharge. It can explain the origin of the tiny neutrino mass and flavor mixing. After the electroweak symmetry breaking the light neutrino mass is generated by the seesaw mechanism which further ensures the mixings between the light neutrino and heavy neutral lepton mass eigenstates. If the triplet fermions are around the electroweak scale having sizable mixings with the SM sector allowed by the correct gauge symmetry, they can be produced at the high energy colliders leaving a variety of characteristic signatures. Based on a simple and concrete realizations of the model we employ a general parametrization for the neutrino Dirac mass matrix and perform a parameter scan to identify the allowed regions satisfying the experimental constraints from the neutrino oscillation data, the electroweak precision measurements and the lepton-flavor violating processes, respectively considering the normal and inverted neutrino mass hierarchies. These parameter regions can be probed at the different collider experiments.
Address [Das, Arindam] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan, Email: arindam.das@het.phys.sci.osaka-u.ac.jp;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000646135900011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4829
Permanent link to this record
 

 
Author Polettini, M. et al; Algora, A.
Title DESPEC Phase-0 campaign at GSI Type Journal Article
Year 2021 Publication (up) Nuovo Cimento C Abbreviated Journal Nuovo Cim. C
Volume 44 Issue 2-3 Pages 67 - 4pp
Keywords
Abstract This paper reports preliminary results of the DESPEC campaign at GSI, focused on the study of neutron-deficient nuclei approaching Sn-100. The results presented show the isomeric decays of excited states with I-pi = 14(+) and 8(+) in Pd-96 and Pd-94, respectively. The detailed characterisation of the DESPEC set-up and analysis methodologies, proven in this experimental run, are crucial for the future campaigns.
Address [Polettini, M.; Bracco, A.] Univ Milan, Dipartimento Fis, Milan, Italy
Corporate Author Thesis
Publisher Soc Italiana Fisica Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2037-4909 ISBN Medium
Area Expedition Conference
Notes WOS:000750850700064 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5111
Permanent link to this record
 

 
Author Pajtler, M.V. et al; Gadea, A.
Title Excited states of Y-90,Y-92,Y-94 populated in Zr-90+Pb-208 multinucleon transfer reaction Type Journal Article
Year 2021 Publication (up) Physica Scripta Abbreviated Journal Phys. Scr.
Volume 96 Issue 3 Pages 035305 - 7pp
Keywords multinucleon transfer reactions; gamma spectroscopy; magnetic spectrometers; gamma-ray spectrometers
Abstract Multinucleon transfer reactions in Zr-90+Pb-208 have been studied via fragment-gamma coincidences, employing the PRISMA magnetic spectrometer coupled to the CLARA gamma-array. An analysis on Y isotopes has been carried out incorporating spectroscopic as well as reaction mechanism aspects. New gamma transitions have been observed in Y-94, confirming the findings of recent studies where nuclei were produced via fission of uranium, and a comparison with near-by Y-90,Y-92 isotopes populated in the same reaction has been discussed. Experimental cross sections have been extracted and compared with the GRAZING calculations, showing a fair agreement along the neutron pick-up side. The results confirm how multinucleon transfer reactions are a suitable mechanism for the study of neutron-rich nuclei.
Address [Pajtler, M. Varga] Univ Osijek, Dept Phys, Osijek, Croatia, Email: Suzana.Szilner@irb.hr;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949 ISBN Medium
Area Expedition Conference
Notes WOS:000611517400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4694
Permanent link to this record
 

 
Author Esposito, R. et al; Domingo-Pardo, C.
Title Design of the third-generation lead-based neutron spallation target for the neutron time-of-flight facility at CERN Type Journal Article
Year 2021 Publication (up) Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams
Volume 24 Issue 9 Pages 093001 - 17pp
Keywords
Abstract The neutron time-of-flight (n_TOF) facility at the European Laboratory for Particle Physics (CERN) is a pulsed white-spectrum neutron spallation source producing neutrons for two experimental areas: the Experimental Area 1 (EAR1), located 185 m horizontally from the target, and the Experimental Area 2 (EAR2), located 20 m above the target. The target, based on pure lead, is impacted by a high-intensity 20-GeV/c pulsed proton beam. The facility was conceived to study neutron-nucleus interactions for neutron kinetic energies between a few meV to several GeV, with applications of interest for nuclear astrophysics, nuclear technology, and medical research. After the second-generation target reached the end of its lifetime, the facility underwent a major upgrade during CERN's Long Shutdown 2 (LS2, 2019-2021), which included the installation of the new third-generation neutron target. The first- and second-generation targets were based on water-cooled massive lead blocks and were designed focusing on EAR1, since EAR2 was built later. The new target is cooled by nitrogen gas to avoid erosion-corrosion and contamination of cooling water with radioactive lead spallation products. Moreover, the new design is optimized also for the vertical flight path and EAR2. This paper presents an overview of the target design focused on both physics and thermomechanical performance, and includes a description of the nitrogen cooling circuit and radiation protection studies.
Address [Esposito, R.; Calviani, M.; Aberle, O.; Barbagallo, M.; Coiffet, T.; Dragoni, F.; Ximenes, R. Franqueira; Giordanino, L.; Grenier, D.; Kershaw, K.; Maire, V.; Moyret, P.; Fontenla, A. Perez; Perillo-Marcone, A.; Pozzi, F.; Sgobba, S.; Timmins, M.; Vlachoudis, V.] European Lab Particle Phys CERN, CH-1211 Geneva 23, Switzerland, Email: raffaele.esposito@cern.ch;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000696029700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4963
Permanent link to this record