toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanchez Mayordomo, C. url  doi
openurl 
  Title Searches for 25 rare and forbidden decays of D+ and Ds+ mesons Type Journal Article
  Year 2021 Publication (up) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 044 - 24pp  
  Keywords Charm physics; Flavour physics; Flavour Changing Neutral Currents; Hadron-Hadron scattering (experiments); Rare decay  
  Abstract A search is performed for rare and forbidden charm decays of the form D+-> hl+l -/+, where h(+/-) is a pion or kaon and l((')+/-) is an electron or muon. The measurements are performed using proton-proton collision data, corresponding to an integrated luminosity of 1.6 fb(-1), collected by the LHCb experiment in 2016. No evidence is observed for the 25 decay modes that are investigated and 90 % confidence level limits on the branching fractions are set between 1.4 x 10(-8) and 6.4 x 10(-6). In most cases, these results represent an improvement on existing limits by one to two orders of magnitude.  
  Address [Leite, J. Baptista; Bediaga, I.; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: christopher.burr@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000762305300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5158  
Permanent link to this record
 

 
Author Poley, L.; Stolzenberg, U.; Schwenker, B.; Frey, A.; Gottlicher, P.; Marinas, C.; Stanitzki, M.; Stelzer, B. doi  openurl
  Title Mapping the material distribution of a complex structure in an electron beam Type Journal Article
  Year 2021 Publication (up) Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 16 Issue 1 Pages P01010 - 33pp  
  Keywords Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Particle tracking detectors; Detector design and construction technologies and materials  
  Abstract The simulation and analysis of High Energy Physics experiments require a realistic simulation of the detector material and its distribution. The challenge is to describe all active and passive parts of large scale detectors like ATLAS in terms of their size, position and material composition. The common method for estimating the radiation length by weighing individual components, adding up their contributions and averaging the resulting material distribution over extended structures provides a good general estimate, but can deviate significantly from the material actually present. A method has been developed to assess its material distribution with high spatial resolution using the reconstructed scattering angles and hit positions of high energy electron tracks traversing an object under investigation. The study presented here shows measurements for an extended structure with a highly inhomogeneous material distribution. The structure under investigation is an End-of-Substructure-card prototype designed for the ATLAS Inner Tracker strip tracker – a PCB populated with components of a large range of material budgets and sizes. The measurements presented here summarise requirements for data samples and reconstructed electron tracks for reliable image reconstruction of large scale, inhomogeneous samples, choices of pixel sizes compared to the size of features under investigation as well as a bremsstrahlung correction for high material densities and thicknesses.  
  Address [Poley, L.; Stelzer, B.] Simon Fraser Univ, Dept Phys, Univ Dr, Burnaby, BC, Canada, Email: APoley@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000608273000010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4687  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cardillo, F.; Castillo, F.L.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Mitsou, V.A.; Moreno Llacer, M.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rodriguez Bosca, S.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Performance of the ATLAS RPC detector and Level-1 muon barrel trigger at root s=13 TeV Type Journal Article
  Year 2021 Publication (up) Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 16 Issue 7 Pages P07029 - 64pp  
  Keywords Gaseous detectors; Muon spectrometers; Resistive-plate chambers; Trigger detectors  
  Abstract The ATLAS experiment at the Large Hadron Collider (LHC) employs a trigger system consisting of a first-level hardware trigger (L1) and a software-based high-level trigger. The L1 muon trigger system selects muon candidates, assigns them to the correct LHC bunch crossing and classifies them into one of six transverse-momentum threshold classes. The L1 muon trigger system uses resistive-plate chambers (RPCs) to generate the muon-induced trigger signals in the central (barrel) region of the ATLAS detector. The ATLAS RPCs are arranged in six concentric layers and operate in a toroidal magnetic field with a bending power of 1.5 to 5.5 Tm. The RPC detector consists of about 3700 gas volumes with a total surface area of more than 4000 m(2). This paper reports on the performance of the RPC detector and L1 muon barrel trigger using 60.8 fb(-1) of proton-proton collision data recorded by the ATLAS experiment in 2018 at a centre-of-mass energy of 13 TeV. Detector and trigger performance are studied using Z boson decays into a muon pair. Measurements of the RPC detector response, efficiency, and time resolution are reported. Measurements of the L1 muon barrel trigger efficiencies and rates are presented, along with measurements of the properties of the selected sample of muon candidates. Measurements of the RPC currents, counting rates and mean avalanche charge are performed using zero-bias collisions. Finally, RPC detector response and efficiency are studied at different high voltage and front-end discriminator threshold settings in order to extrapolate detector response to the higher luminosity expected for the High Luminosity LHC.  
  Address [Duvnjak, D.; Jackson, P.; Kong, X. Y.; Oliver, J. L.; Ruggeri, T. A.; Sharma, A. S.; White, J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000694909000009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4966  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Aparisi Pozo, J.A.; Bailey, A.J.; Cabrera Urban, S.; Cardillo, F.; Castillo, F.L.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Estrada Pastor, O.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Higon-Rodriguez, E.; Lacasta, C.; Lozano Bahilo, J.J.; Mamuzic, J.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Moreno Llacer, M.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rodriguez Bosca, S.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sayago Galvan, I.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Measurements of sensor radiation damage in the ATLAS inner detector using leakage currents Type Journal Article
  Year 2021 Publication (up) Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 16 Issue 8 Pages P08025 - 46pp  
  Keywords Radiation damage to detector materials (solid state); Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc)  
  Abstract Non-ionizing energy loss causes bulk damage to the silicon sensors of the ATLAS pixel and strip detectors. This damage has important implications for data-taking operations, charged-particle track reconstruction, detector simulations, and physics analysis. This paper presents simulations and measurements of the leakage current in the ATLAS pixel detector and semiconductor tracker as a function of location in the detector and time, using data collected in Run 1 (2010-2012) and Run 2 (2015-2018) of the Large Hadron Collider. The extracted fluence shows a much stronger vertical bar z vertical bar-dependence in the innermost layers than is seen in simulation. Furthermore, the overall fluence on the second innermost layer is significantly higher than in simulation, with better agreement in layers at higher radii. These measurements are important for validating the simulation models and can be used in part to justify safety factors for future detector designs and interventions.  
  Address [Duvnjak, D.; Jackson, P.; Kong, A. X. Y.; Oliver, J. L.; Ruggeri, T. A.; Sharma, A. S.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000706929300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5004  
Permanent link to this record
 

 
Author Hiti, B.; Cindro, V.; Gorisek, A.; Franks, M.; Marco-Hernandez, R.; Kramberger, G.; Mandic, I.; Mikuz, M.; Powell, S.; Steininger, H.; Vilella, E.; Zavrtanik, M.; Zhang, C. url  doi
openurl 
  Title Characterisation of analogue front end and time walk in CMOS active pixel sensor Type Journal Article
  Year 2021 Publication (up) Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 16 Issue 12 Pages P12020 - 12pp  
  Keywords Charge induction; Radiation-hard detectors; Solid state detectors  
  Abstract In this work we investigated a method to determine time walk in an active silicon pixel sensor prototype using Edge-TCT with infrared laser charge injection. Samples were investigated before and after neutron irradiation to 5 . 10(14) n(eq)/cm(2). Threshold, noise and calibration of the analogue front end were determined with external charge injection. A spatially sensitive measurement of collected charge and time walk was carried out with Edge-TCT, showing a uniform charge collection and output delay in pixel centre. On pixel edges charge sharing was observed due to finite beam width resulting in smaller signals and larger output delay. Time walk below 25 ns was observed for charge above 2000 e(-) at a threshold above the noise level. Time walk measurement with external charge injection yielded identical results.  
  Address [Hiti, B.; Cindro, V.; Gorisek, A.; Kramberger, G.; Mandic, I.; Mikuz, M.; Zavrtanik, M.] Jozef Stefan Inst, Jamova Cesta 39, Ljubljana, Slovenia, Email: bojan.hiti@ijs.si  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000758055400055 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5138  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva