toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Aguilar, A.C.; Ferreira, M.N.; Ibañez, D.; Papavassiliou, J. url  doi
openurl 
  Title Schwinger displacement of the quark-gluon vertex Type Journal Article
  Year 2023 Publication (down) European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 10 Pages 967 - 22pp  
  Keywords  
  Abstract The action of the Schwinger mechanism in pure Yang-Mills theories endows gluons with an effective mass, and, at the same time, induces a measurable displacement to the Ward identity satisfied by the three-gluon vertex. In the present work we turn to Quantum Chromodynamics with two light quark flavors, and explore the appearance of this characteristic displacement at the level of the quark-gluon vertex. When the Schwinger mechanism is activated, this vertex acquires massless poles, whose momentum-dependent residues are determined by a set of coupled integral equations. The main effect of these residues is to displace the Ward identity obeyed by the pole-free part of the vertex, causing modifications to its form factors, and especially the one associated with the tree-level tensor. The comparison between the available lattice data for this form factor and the Ward identity prediction reveals a marked deviation, which is completely compatible with the theoretical expectation for the attendant residue. This analysis corroborates further the self-consistency of this mass-generating scenario in the general context of real-world strong interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6080  
Permanent link to this record
 

 
Author Souza, E.V.; Ferreira, M.N.; Aguilar, A.C.; Papavassiliou, J.; Roberts, C.D.; Xu, S.S. url  doi
openurl 
  Title Pseudoscalar glueball mass: a window on three-gluon interactions Type Journal Article
  Year 2020 Publication (down) European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 56 Issue 1 Pages 25 - 7pp  
  Keywords  
  Abstract In pure-glue QCD, gluon-gluon scattering in the J(PC) = 0(-+) channel is described by a very simple equation, especially if one considers just the leading contribution to the scattering kernel. Of all components in this kernel, only the three-gluon vertex, V-mu nu rho, is poorly constrained by contemporary analyses; hence, calculations of 0(-+) glueball properties serve as a clear window onto the character and form of V-mu nu rho. This is important given that many modern calculations of V-mu nu rho predict the appearance of an infrared suppression in the scalar function which comes to modulate the bare vertex after the nonperturbative resummation of interactions. Such behaviour is a peculiar prediction; but we find that the suppression is essential if one is to achieve agreement with lattice-QCD predictions for the 0(-+) glueball mass. Hence, it is likely that this novel feature of V-mu nu rho is real and has observable implications for the spectrum, decays and interactions of all QCD bound-states.  
  Address [Souza, E. V.] Fed Inst Educ Sci & Technol Piaui, BR-64605500 Picos, Piaui, Brazil, Email: emanuel.veras@ifpi.edu.br;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000513948400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4291  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva