|   | 
Details
   web
Records
Author de Azcarraga, J.A.
Title The new Spanish educational legislation: why public education will not improve Type Journal Article
Year 2022 Publication (down) Revista Española de Pedagogía Abbreviated Journal Rev. Esp. Pedagog.
Volume 80 Issue 281 Pages 111-129
Keywords Forthcoming Spanish educational legislation; primary school; secondary education; universities
Abstract This paper provides some reasons that explain, in the view of the author, why the present eagerness of the Spanish Educational Authorities to reform all levels of education, from primary school to the universities, will not improve the quality of the Spanish educational system.
Address [Adolfo de Azcarraga, Jose] Univ Valencia, Fis Teor, Valencia, Spain, Email: j.a.de.azcarraga@ific.uv.es
Corporate Author Thesis
Publisher Univ Int Rioja-Unir Place of Publication Editor
Language Spanish Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-9461 ISBN Medium
Area Expedition Conference
Notes WOS:000752024500007 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5125
Permanent link to this record
 

 
Author Borsato, M. et al; Zurita, J.; Henry, L.; Jashal, B.K.; Oyanguren, A.
Title Unleashing the full power of LHCb to probe stealth new physics Type Journal Article
Year 2022 Publication (down) Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.
Volume 85 Issue 2 Pages 024201 - 45pp
Keywords LHCb; stealth physics; BSM physics; hidden sectors; long-lived particles; dark matter
Abstract In this paper, we describe the potential of the LHCb experiment to detect stealth physics. This refers to dynamics beyond the standard model that would elude searches that focus on energetic objects or precision measurements of known processes. Stealth signatures include long-lived particles and light resonances that are produced very rarely or together with overwhelming backgrounds. We will discuss why LHCb is equipped to discover this kind of physics at the Large Hadron Collider and provide examples of well-motivated theoretical models that can be probed with great detail at the experiment.
Address [Borsato, M.] Heidelberg Univ, Phys Inst, Heidelberg, Germany, Email: xabier.cid.vidal@cern.ch
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4885 ISBN Medium
Area Expedition Conference
Notes WOS:000762056700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5151
Permanent link to this record
 

 
Author AbdusSalam, S.S. et al; Eberhardt, O.
Title Simple and statistically sound recommendations for analysing physical theories Type Journal Article
Year 2022 Publication (down) Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.
Volume 85 Issue 5 Pages 052201 - 11pp
Keywords particle physics; statistics; methodology
Abstract Physical theories that depend on many parameters or are tested against data from many different experiments pose unique challenges to statistical inference. Many models in particle physics, astrophysics and cosmology fall into one or both of these categories. These issues are often sidestepped with statistically unsound ad hoc methods, involving intersection of parameter intervals estimated by multiple experiments, and random or grid sampling of model parameters. Whilst these methods are easy to apply, they exhibit pathologies even in low-dimensional parameter spaces, and quickly become problematic to use and interpret in higher dimensions. In this article we give clear guidance for going beyond these procedures, suggesting where possible simple methods for performing statistically sound inference, and recommendations of readily-available software tools and standards that can assist in doing so. Our aim is to provide any physicists lacking comprehensive statistical training with recommendations for reaching correct scientific conclusions, with only a modest increase in analysis burden. Our examples can be reproduced with the code publicly available at Zenodo.
Address [AbdusSalam, Shehu S.; Fowlie, Andrew] Shahid Beheshti Univ, Dept Phys, Tehran, Iran, Email: andrew.j.fowlie@njnu.edu.cn
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4885 ISBN Medium
Area Expedition Conference
Notes WOS:000791574900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5221
Permanent link to this record
 

 
Author Perez-Calatayud, J.; Ballester, F.; Tedgren, C.; DeWerd, L.A.; Papagiannis, P.; Rivard, M.J.; Siebert, F.A.; Vijande, J.
Title GEC-ESTRO ACROP recommendations on calibration and traceability of HE HDR-PDR photon-emitting brachytherapy sources at the hospital level Type Journal Article
Year 2022 Publication (down) Radiotherapy and Oncology Abbreviated Journal Radiother. Oncol.
Volume 176 Issue Pages 108-117
Keywords Brachytherapy; High energy; Calibration; Dosimetry; HDR-PDR
Abstract The vast majority of radiotherapy departments in Europe using brachytherapy (BT) perform temporary implants of high-or pulsed-dose rate (HDR-PDR) sources with photon energies higher than 50 keV. Such techniques are successfully applied to diverse pathologies and clinical scenarios. These recommen-dations are the result of Working Package 21 (WP-21) initiated within the BRAchytherapy PHYsics Quality Assurance System (BRAPHYQS) GEC-ESTRO working group with a focus on HDR-PDR source cal-ibration. They provide guidance on the calibration of such sources, including practical aspects and issues not specifically accounted for in well-accepted societal recommendations, complementing the BRAPHYQS WP-18 Report dedicated to low energy BT photon emitting sources (seeds). The aim of this report is to provide a European-wide standard in HDR-PDR BT source calibration at the hospital level to maintain high quality patient treatments.
Address [Perez-Calatayud, Jose] La Fe Hosp, Radiotherapy Dept, Valencia, Spain, Email: javier.vijande@uv.es
Corporate Author Thesis
Publisher Elsevier Ireland Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-8140 ISBN Medium
Area Expedition Conference
Notes WOS:000880438000006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5466
Permanent link to this record
 

 
Author Particle Data Group (Workman, R.L. et al); Hernandez-Rey, J.J.; Pich, A.
Title Review of Particle Physics Type Journal Article
Year 2022 Publication (down) Progress of Theoretical and Experimental Physics Abbreviated Journal Prog. Theor. Exp. Phys.
Volume 2022 Issue 8 Pages 083C01 - 2270pp
Keywords
Abstract The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print, as a web version optimized for use on phones, and as an Android app.
Address [Workman, R. L.] George Washington Univ, Dept Phys, Washington, DC 20052 USA
Corporate Author Thesis
Publisher Oxford Univ Press Inc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-3911 ISBN Medium
Area Expedition Conference
Notes WOS:000841419600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5355
Permanent link to this record