|   | 
Details
   web
Records
Author ANTARES Collaboration (Ageron, M. et al); Aguilar, J.A.; Bigongiari, C.; Carmona, E.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Real, D.; Roca, V.; Salesa, F.; Toscano, S.; Urbano, F.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title ANTARES: The first undersea neutrino telescope Type Journal Article
Year 2011 Publication (down) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 656 Issue 1 Pages 11-38
Keywords Neutrino; Astroparticle; Neutrino astronomy; Deep sea detector; Marine technology; DWDM; Photomultiplier tube; Submarine cable; Wet mateable connector
Abstract The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.
Address [Barbarito, E; Cassano, B; Ceres, A; Circella, M; Fiorello, C; Mongelli, M; Montaruli, T; Ruppi, M] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy, Email: Marco.Circella@ba.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000296129100003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 785
Permanent link to this record
 

 
Author ANTARES Collaboration (Aguilar, J.A. et al); Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J.
Title A method for detection of muon induced electromagnetic showers with the ANTARES detector Type Journal Article
Year 2012 Publication (down) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 675 Issue Pages 56-62
Keywords Neutrino telescope; Electromagnetic shower identification; High energy muons; Energy reconstruction
Abstract The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.
Address [Aguilar, J. A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J. P.; Hernandez-Rey, J. J.; Mangano, S.; Rostovtsev, A.; Ruiz-Rivas, J.; Salesa, F.; Sanchez-Losa, A.; Toscano, S.; Yepes, H.; Zornoza, J. D.; Zuniga, J.] Univ Valencia, IFIC, Inst Fis Corpuscular, CSIC, Valencia 46071, Spain, Email: manganos@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000302973600011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 988
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Palacios Gonzalez, J.; Pieterse, C.; Real, D.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J.
Title Nanobeacon: A time calibration device for the KM3NeT neutrino telescope Type Journal Article
Year 2022 Publication (down) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1040 Issue Pages 167132 - 13pp
Keywords Time calibration; Instrumentation; Neutrino telescopes
Abstract The KM3NeT Collaboration is currently constructing a multi-site high-energy neutrino telescope in the Mediterranean Sea consisting of matrices of pressure-resistant glass spheres, each holding a set of 31 small-area photomultipliers. The main goals of the telescope are the observation of neutrino sources in the Universe and the measurement of the neutrino oscillation parameters with atmospheric neutrinos. A relative time synchronisation between photomultipliers of the nanosecond order needed to guarantee the required angular resolution of the detector. Due to the large detector volumes to be instrumented by KM3NeT, a cost reduction of the different systems is a priority. To this end, the inexpensive Nanobeacon has been designed and developed by the KM3NeT Collaboration to be used for detector time-calibration studies. At present, more than 600 & nbsp;Nanobeacons have been already produced. The characterisation of the optical pulse and the wavelength emission profile of the devices is critical for the time calibration. The optical pulse rise time has been quantified as less than 3 ns, while the Full Width Half Maximum is less than 6 ns. The wavelength drift, due to a variation of the supply voltage, has also been qualified as lower than 10 nm for the full range of the Nanobeacon. In this paper, more details about the main features of the Nanobeacon design, production and operation, together with the main properties of the light pulse generated are described.
Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: sagreus@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000841467100009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5342
Permanent link to this record
 

 
Author ANTARES Collaboration (Albert, A. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Search for high-energy neutrinos from bright GRBs with ANTARES Type Journal Article
Year 2017 Publication (down) Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 469 Issue 1 Pages 906-915
Keywords acceleration of particles; neutrinos; gamma-ray burst: individual: GRB 080916C; gamma-ray burst: individual: GRB 110918A; gamma-ray burst: individual: GRB 130427A; gamma-ray burst: individual: GRB 130505A
Abstract Gamma-ray bursts are thought to be sites of hadronic acceleration, thus neutrinos are expected from the decay of charged particles, produced in p gamma interactions. The methods and results of a search for muon neutrinos in the data of the ANTARES neutrino telescope from four bright GRBs (GRB 080916C, GRB 110918A, GRB 130427A and GRB 130505A) observed between 2008 and 2013 are presented. Two scenarios of the fireball model have been investigated: the internal shock scenario, leading to the production of neutrinos with energies mainly above 100 TeV, and the photospheric scenario, characterized by a low-energy component in neutrino spectra due to the assumption of neutrino production closer to the central engine. Since no neutrino events have been detected in temporal and spatial coincidence with these bursts, upper limits at 90 per cent confidence level on the expected neutrino fluxes are derived. The non-detection allows for directly constraining the bulk Lorentz factor of the jet Gamma and the baryon loading f(p).
Address [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, GRPHE, Inst Univ Technol Colmar, 34 Rue Grillenbreit BP 50568, F-68008 Colmar, France, Email: silvia.celli@gssi.infn.it
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000402825000062 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3159
Permanent link to this record
 

 
Author ANTARES and HESS Collaborations (Petroff, E. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title A polarized fast radio burst at low Galactic latitude Type Journal Article
Year 2017 Publication (down) Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.
Volume 469 Issue 4 Pages 4465-4482
Keywords polarization; methods: data analysis; surveys; ISM: structure
Abstract We report on the discovery of a new fast radio burst (FRB), FRB 150215, with the Parkes radio telescope on 2015 February 15. The burst was detected in real time with a dispersion measure (DM) of 1105.6 +/- 0.8 pc cm(-3), a pulse duration of 2.8(-0.5)(+1.2) ms, and a measured peak flux density assuming that the burst was at beam centre of 0.7(-0.1)(+0.2) Jy. The FRB originated at a Galactic longitude and latitude of 24.66 degrees, 5.28 degrees and 25 degrees away from the Galactic Center. The burst was found to be 43 +/- 5 per cent linearly polarized with a rotation measure (RM) in the range -9 < RM < 12 rad m(-2) (95 per cent confidence level), consistent with zero. The burst was followed up with 11 telescopes to search for radio, optical, X-ray, gamma-ray and neutrino emission. Neither transient nor variable emission was found to be associated with the burst and no repeat pulses have been observed in 17.25 h of observing. The sightline to the burst is close to the Galactic plane and the observed physical properties of FRB 150215 demonstrate the existence of sight lines of anomalously low RM for a given electron column density. The Galactic RM foreground may approach a null value due to magnetic field reversals along the line of sight, a decreased total electron column density from the Milky Way, or some combination of these effects. A lower Galactic DM contribution might explain why this burst was detectable whereas previous searches at low latitude have had lower detection rates than those out of the plane.
Address [Petroff, E.; Rowlinson, A.] Netherlands Inst Radio Astron, ASTRON, Postbus 2, NL-7990 AA Dwingeloo, Netherlands
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes WOS:000406837900051 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3241
Permanent link to this record