|   | 
Details
   web
Records
Author n_TOF Collaboration (Mazzone, A. et al); Babiano-Suarez, V; Caballero, L.; Domingo-Pardo, C.; Ladarescu, I; Tain, J.L.
Title Measurement of the Gd-154(n, gamma) cross section and its astrophysical implications Type Journal Article
Year 2020 Publication (up) Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 804 Issue Pages 135405 - 6pp
Keywords s process; Gd-154; Neutron time of flight; n_TOF
Abstract The neutron capture cross section of Gd-154 was measured from 1 eV to 300 keV in the experimental area located 185 m from the CERN n_TOF neutron spallation source, using a metallic sample of gadolinium, enriched to 67% in Gd-154. The capture measurement, performed with four C6D6 scintillation detectors, has been complemented by a transmission measurement performed at the GELINA time-of-flight facility (JRC-Geel), thus minimising the uncertainty related to sample composition. An accurate Maxwellian averaged capture cross section (MACS) was deduced over the temperature range of interest for s process nucleosynthesis modelling. We report a value of 880(50) mb for the MACS at kT = 30 keV, significantly lower compared to values available in literature. The new adopted Gd-154(n, gamma) cross section reduces the discrepancy between observed and calculated solar s-only isotopic abundances predicted by s-process nucleosynthesis models.
Address [Mazzone, A.; Barbagallo, M.; Colonna, N.; Damone, L. A.; Tagliente, G.; Variale, V.] Ist Nazl Fis Nucl, Bari, Italy, Email: Cristian.Massimi@bo.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000548740300022 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4464
Permanent link to this record
 

 
Author Viegas, R.; Roser, J.; Barrientos, L.; Borja-Lloret, M.; Casaña, J.V.; Lopez, J.G.; Jimenez-Ramos, M.C.; Hueso-Gonzalez, F.; Ros, A.; Llosa, G.
Title Characterization of a Compton camera based on the TOFPET2 ASIC Type Journal Article
Year 2023 Publication (up) Radiation Physics and Chemistry Abbreviated Journal Radiat. Phys. Chem.
Volume 202 Issue Pages 110507 - 11pp
Keywords Compton camera; Hadron therapy; LaBr3; PETsys TOFPET2; Silicon photomultipliers
Abstract The use of Compton cameras for medical imaging and its interest as a hadron therapy treatment monitoring has increased in the last decade with the development of silicon photomultipliers. MACACOp is a Compton camera prototype designed and assembled at the IRIS group of IFIC-Valencia. This Compton camera is based on monolithic Lanthanum (III) Bromide crystals and silicon photomultipliers, and employs the novel TOFPET2 ASIC as readout electronics. This system emerged as an alternative to MACACO II prototype, with the aim of improving its limited time resolution. To test the performance of the ASIC in a Compton camera setup, the prototype was characterized, both in laboratory and in-beam. A time resolution of 1.5 ns was obtained after time corrections, which improves greatly the performance of the MACACO II. Moreover, the results obtained at high photon energies demonstrate the ability of the system to obtain 1 mm displacements of the reconstructed spots. The results reinforce the potential of the system as a monitoring device for hadron therapy.
Address [Viegas, R.; Roser, J.; Barrientos, L.; Borja-Lloret, M.; Casana, J., V; Hueso-Gonzalez, F.; Ros, A.; Llosa, G.] CSIC UV, Inst Fis Corpuscular IFIC, Valencia, Spain, Email: Rita.Viegas@ific.uv.es
Corporate Author Thesis
Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-806x ISBN Medium
Area Expedition Conference
Notes WOS:000870840600006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5392
Permanent link to this record
 

 
Author Gomez-Cadenas, J.J.; Benlloch-Rodriguez, J.M.; Ferrario, P.
Title Application of scintillating properties of liquid xenon and silicon photomultiplier technology to medical imaging Type Journal Article
Year 2016 Publication (up) Spectrochimica Acta Part B Abbreviated Journal Spectroc. Acta Pt. B
Volume 118 Issue Pages 6-13
Keywords PET; TOF; Liquid xenon; Energy resolution; High sensitivity; Coincidence resolution time (CRT); SiPMs
Abstract We describe a new positron emission time-of-flight apparatus using liquid xenon. The detector is based in a liquid xenon scintillating cell. The cell shape and dimensions can be optimized depending on the intended application. In its simplest form, the liquid xenon scintillating cell is a box in which two faces are covered by silicon photomultipliers and the others by a reflecting material such as Teflon. It is a compact, homogenous and highly efficient detector which shares many of the desirable properties of monolithic crystals, with the added advantage of high yield and fast scintillation offered by liquid xenon. Our initial studies suggest that good energy and spatial resolution comparable with that achieved by lutetium oxyorthosilicate crystals can be obtained with a detector based in liquid xenon scintillating cells. In addition, the system can potentially achieve an excellent coincidence resolving time of better than 100 ps.
Address [Gomez-Cadenas, J. J.; Benlloch-Rodriguez, J. M.; Ferrario, Paola] Univ Valencia, CSIC, IFIC, E-46003 Valencia, Spain, Email: gomez@mail.cern.ch
Corporate Author Thesis
Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0584-8547 ISBN Medium
Area Expedition Conference
Notes WOS:000374073300002 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2631
Permanent link to this record