toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bhattacharya, S.; Mondal, N.; Roshan, R.; Vatsyayan, D. url  doi
openurl 
  Title Leptogenesis, dark matter and gravitational waves from discrete symmetry breaking Type Journal Article
  Year 2024 Publication (down) Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 029 - 25pp  
  Keywords leptogenesis; dark matter theory; gravitational waves / theory  
  Abstract We analyse a model that connects the neutrino sector and the dark sector of the universe via a mediator 41., stabilised by a discrete Z4 symmetry that breaks to a remnant Z2 upon 41. acquiring a non -zero vacuum expectation value (v phi). The model accounts for the observed baryon asymmetry of the universe via additional contributions to the canonical Type -I leptogenesis. The Z4 symmetry breaking scale (v phi) in the model not only establishes a connection between the neutrino sector and the dark sector, but could also lead to gravitational wave signals that are within the reach of current and future experimental sensitivities.  
  Address [Bhattacharya, Subhaditya; Mondal, Niloy] Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, Assam, India, Email: subhab@iitg.ac.in;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001246744300003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6162  
Permanent link to this record
 

 
Author Olmo, G.J. url  doi
openurl 
  Title Palatini approach to modified gravity: f(R) theories and beyond Type Journal Article
  Year 2011 Publication (down) International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D  
  Volume 20 Issue 4 Pages 413-462  
  Keywords Palatini formalism; modified gravity; cosmic speed-up; dark energy; dark matter; MOND; quantum gravity phenomenology; Hamiltonian formulation; stellar structure; Cauchy problem; solar system tests  
  Abstract We review the recent literature on modified theories of gravity in the Palatini approach. After discussing the motivations that lead to consider alternatives to Einstein's theory and to treat the metric and the connection as independent objects, we review several topics that have been recently studied within this framework. In particular, we provide an in-depth analysis of the cosmic speed-up problem, laboratory and solar system tests, the structure of stellar objects, the Cauchy problem, and bouncing cosmologies. We also discuss the importance of going beyond the f(R) models to capture other phenomenological aspects related with dark matter/energy and quantum gravity.  
  Address [Olmo, Gonzalo J.] Univ Valencia CSIC, Dept Fis Teor, Valencia, Spain, Email: gonzalo.olmo@uv.es  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-2718 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000290228200001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 961  
Permanent link to this record
 

 
Author Capozziello, S.; Harko, T.; Lobo, F.S.N.; Olmo, G.J. url  doi
openurl 
  Title Hybrid Modified Gravity Unifying Local Tests, Galactic Dynamics and Late-Time Cosmic Acceleration Type Journal Article
  Year 2013 Publication (down) International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D  
  Volume 22 Issue 12 Pages 1342006 - 7pp  
  Keywords Modified gravity; late-time cosmic acceleration; dark matter; solar system tests  
  Abstract The nonequivalence between the metric and Palatini formalisms of f(R) gravity is an intriguing feature of these theories. However, in the recently proposed hybrid metric-Palatini gravity, consisting of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini, the “true” gravitational field is described by the interpolation of these two nonequivalent approaches. The theory predicts the existence of a light long-range scalar field, which passes the local constraints and affects the galactic and cosmological dynamics. Thus, the theory opens new possibilities for a unified approach, in the same theoretical framework, to the problems of dark energy and dark matter, without distinguishing a priori matter and geometric sources, but taking their dynamics into account under the same standard.  
  Address [Capozziello, Salvatore] Univ Naples Federico II, Dipartimento Fis, I-80126 Naples, Italy, Email: capozzie@na.infn.it;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-2718 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000329048900013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1688  
Permanent link to this record
 

 
Author Mitsou, V.A. url  doi
openurl 
  Title Shedding light on dark matter at colliders Type Journal Article
  Year 2013 Publication (down) International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 28 Issue 31 Pages 1330052 - 34pp  
  Keywords Dark matter; supersymmetry; extra dimensions; beyond Standard Model physics; Large Hadron Collider; ATLAS; CMS  
  Abstract Dark matter remains one of the most puzzling mysteries in Fundamental Physics of our times. Experiments at high-energy physics colliders are expected to shed light to its nature and determine its properties. This review focuses on recent searches for dark matter signatures at the Large Hadron Collider, also discussing related prospects in future e(+)e(-) colliders.  
  Address Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46980 Paterna, Valencia, Spain, Email: vasiliki.mitsou@ific.uv.es  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000329057000002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1676  
Permanent link to this record
 

 
Author MoEDAL Collaboration (Acharya, B. et al); Bernabeu, J.; Garcia, C.; King, M.; Mitsou, V.A.; Vento, V.; Vives, O. url  doi
openurl 
  Title The physics programme of the MoEDAL experiment at the LHC Type Journal Article
  Year 2014 Publication (down) International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 29 Issue 23 Pages 1430050 - 91pp  
  Keywords MoEDAL; LHC magnetic monopole; monopolium; dyons; (pseudo-)stable massive charged particle; supersymmetry; technicolor; extra dimensions; dark matter; doubly charged particles; highly ionizing particles; physics beyond the Standard Model  
  Abstract The MoEDAL experiment at Point 8 of the LHC ring is the seventh and newest LHC experiment. It is dedicated to the search for highly-ionizing particle avatars of physics beyond the Standard Model, extending significantly the discovery horizon of the LHC. A MoEDAL discovery would have revolutionary implications for our fundamental understanding of the Microcosm. MoEDAL is an unconventional and largely passive LHC detector comprised of the largest array of Nuclear Track Detector stacks ever deployed at an accelerator, surrounding the intersection region at Point 8 on the LHC ring. Another novel feature is the use of paramagnetic trapping volumes to capture both electrically and magnetically charged highly-ionizing particles predicted in new physics scenarios. It includes an array of TimePix pixel devices for monitoring highly-ionizing particle backgrounds. The main passive elements of the MoEDAL detector do not require a trigger system, electronic readout, or online computerized data acquisition. The aim of this paper is to give an overview of the MoEDAL physics reach, which is largely complementary to the programs of the large multipurpose LHC detectors ATLAS and CMS.  
  Address [Acharya, B.; Alexandre, J.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: jpinfold@ualberta.ca  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000342220300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1950  
Permanent link to this record
 

 
Author Valle, J.W.F. url  doi
openurl 
  Title Status and implications of neutrino masses: a brief panorama Type Journal Article
  Year 2015 Publication (down) International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 30 Issue 13 Pages 1530034 - 13pp  
  Keywords Neutrino mixing and oscillations; seesaw mechanism; quark-lepton unification; flavor symmetry; electroweak symmetry breaking; neutrinoless double beta decay; dark matter; inflation  
  Abstract With the historic discovery of the Higgs boson our picutre of particle physics would have been complete were it nor for the neutrino sector and cosmology. I briefly discuss the role of neutrino masses and mixing upon gauge coupling unification, electroweak breaking and the flavor sector. Time is ripe for new discoveries such as leptonic CP violation, charged lepton flavor violation and neutrinoless double beta decay. Neutrinos could also play a role is elucidating the nature of dark matter and cosmic inflation.  
  Address Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Valencia, Spain  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000353955400002 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2211  
Permanent link to this record
 

 
Author Bordes, J.; Chan, H.M.; Tsun, S.S. url  doi
openurl 
  Title A closer study of the framed standard model yielding testable new physics plus a hidden sector with dark matter candidates Type Journal Article
  Year 2018 Publication (down) International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 33 Issue 33 Pages 1850195 - 75pp  
  Keywords Gauge field theories; beyond the standard model; composite models; mass and mixing of fermions; dark matter  
  Abstract This closer study of the FSM (1) retains the earlier results of Ref. 1 in offering explanation for the existence of three fermion generations, as well as the hierarchical mass and mixing patterns of leptons and quarks; (II) predicts a vector boson G with mass of order TeV which mixes gamma with and Z of the standard model. The subsequent deviations from the standard mixing scheme are calculable in terms of the G mass. While these deviations for (i) mz – mw, (ii) Gamma(Z -> l (+)l( -)), and (iii) F(Z -> hadrons) are all within present experimental errors so long as mG > 1 TeV, they should soon be detectable if the G mass is not too much bigger; (III) suggests that in parallel to the standard sector familiar to us, there is another where the roles of flavour and colour are interchanged. Though quite as copiously populated and as vibrant in self-interactions as our own, it communicates but little with the standard sector except via mixing through a couple of known portals, one of which is the gamma – Z – G complex noted in (II), and the other is a scalar complex which includes the standard model Higgs. As a result, the new sectors paper. appears hidden to us as we appear hidden to them, and so its lowest members with masses of order 10 MeV, being electrically neutral and seemingly stable, but abundant, may make eligible candidates as constituents of dark matter. A more detailed summary of these results together with some remarks on the model's special theoretical features can be found in the last section of this paper.  
  Address [Bordes, Jose] Univ Valencia, CSIC, Ctr Mixto, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000453027500004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3844  
Permanent link to this record
 

 
Author Bordes, J.; Chan, H.M.; Tsou, S.T. url  doi
openurl 
  Title Unified FSM treatment of CP physics extended to hidden sector giving (i) delta(CP) for leptons as prediction, (ii) new hints on the material content of the universe Type Journal Article
  Year 2021 Publication (down) International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 36 Issue Pages 2150238 - 19pp  
  Keywords Phenomenology beyond the Standard Model; framed Standard Model; CP physics; dark matter  
  Abstract A unified treatment of CP physics for quarks and leptons in the framed Standard Model (FSM) is extended to include the predicted hidden sector giving as consequences: (i) that an earlier part estimate of the Jarlskog invariant J' for leptons is turned into a prediction for its actual value, i.e. J' similar to -0.012 (delta(CP)' similar to 1.11 pi), which is of the right order of magnitude, of the right sign, and in the range of values favoured by the present experiment, (ii) some novel twists to the effects of CP-violation on the material content of the universe.  
  Address [Bordes, Jose] Univ Valencia, Ctr Mixto CSIC, Dept Fis Teor, Calle Dr Moliner 50, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000732963000005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5059  
Permanent link to this record
 

 
Author Gola, S.; Mandal, S.; Sinha, N. url  doi
openurl 
  Title ALP-portal majorana dark matter Type Journal Article
  Year 2022 Publication (down) International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 37 Issue Pages 2250131 - 14pp  
  Keywords Axion like particle; heavy neutrinos; dark matter  
  Abstract Axion like particles (ALPs) and right-handed neutrinos (RHNs) are two well-motivated dark matter (DM) candidates. However, these two particles have a completely different origin. Axion was proposed to solve the strong CP problem, whereas RHNs were introduced to explain light neutrino masses through seesaw mechanisms. We study the case of ALP portal RHN DM (Majorana DM) taking into account existing constraints on ALPs. We consider the leading effective operators mediating interactions between the ALP and Standard Model (SM) particles and three RHNs to generate light neutrino masses through type-I seesaw. Further, ALP-RHN neutrino coupling is introduced to generalize the model which is restricted by the relic density and indirect detection constraint.  
  Address [Gola, Shivam; Sinha, Nita] Inst Math Sci, CIT Campus, Chennai 600113, Tamil Nadu, India, Email: shivamg@imsc.res.in;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000854297000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5359  
Permanent link to this record
 

 
Author Garcfa-Barcelo, J.M.; Melcon, A.A.; Cuendis, S.A.; Diaz-Morcillo, A.; Gimeno, B.; Kanareykin, A.; Lozano-Guerrero, A.J.; Navarro, P.; Wuensch, W. url  doi
openurl 
  Title On the Development of New Tuning and Inter-Coupling Techniques Using Ferroelectric Materials in the Detection of Dark Matter Axions Type Journal Article
  Year 2023 Publication (down) IEEE Access Abbreviated Journal IEEE Access  
  Volume 11 Issue Pages 30360-30372  
  Keywords Tuning; Couplings; Permittivity; Dark matter; Magnetic resonance; Cryogenics; Receivers; Ferroelectrics; Microwave devices; Axion detection; axion-photon interaction; dark matter; ferroelectrics; haloscope; KTO; microwave resonator; STO; tuning  
  Abstract Tuning is an essential requirement for the search of dark matter axions employing haloscopes since its mass is not known yet to the scientific community. At the present day, most haloscope tuning systems are based on mechanical devices which can lead to failures due to the complexity of the environment in which they are used. However, the electronic tuning making use of ferroelectric materials can provide a path that is less vulnerable to mechanical failures and thus complements and expands current tuning systems. In this work, we present and design a novel technique for using the ferroelectric Potassium Tantalate (KTaO3 or KTO) material as a tuning element in haloscopes based on coupled microwave cavities. In this line, the structures used in the Relic Axion Detector Exploratory Setup (RADES) group are based on several cavities that are connected by metallic irises, which act as interresonator coupling elements. In this article, we also show how to use these KTaO3 films as interresonator couplings between cavities, instead of inductive or capacitive metallic windows used in the past. These two techniques represent a crucial upgrade over the current systems employed in the dark matter axions community, achieving a tuning range of 2.23% which represents a major improvement as compared to previous works (<0.1%) for the same class of tuning systems. The theoretical and simulated results shown in this work demonstrate the interest of the novel techniques proposed for the incorporation of this kind of ferroelectric media in multicavity resonant haloscopes in the search for dark matter axions.  
  Address [Garcia-Barcelo, J. M.; Melcon, A. Alvarez; Diaz-Morcillo, A.; Lozano-Guerrero, A. J.; Navarro, P.] Tech Univ Cartagena, Dept Informat & Commun Technol, Cartagena 30203, Spain, Email: josemaria.garcia@upct.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2169-3536 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000966674500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5513  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva