|   | 
Details
   web
Records
Author Hara, K. et al; Escobar, C.; Garcia, C.; Lacasta, C.; Miñano, M.; Soldevila, U.
Title Charge collection study with the ATLAS ITk prototype silicon strip sensors ATLAS17LS Type Journal Article
Year 2020 Publication (up) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 983 Issue Pages 164422 - 6pp
Keywords ATLAS ITk; Microstrip sensor; Charge collection; Radiation damage
Abstract The inner tracker of the ATLAS detector is scheduled to be replaced by a completely new silicon-based inner tracker (ITk) for the Phase-II of the CERN LHC (HL-LHC). The silicon strip detector covers the volume 40 < R < 100 cm in the radial and vertical bar z vertical bar <300 cm in the longitudinal directions. The silicon sensors for the detector will be fabricated using the n(+)-on-p 6-inch wafer technology, for a total of 22,000 wafers. Intensive studies were carried out on the final prototype sensors ATLAS17LS fabricated by Hamamatsu Photonics (HPK). The charge collection properties were examined using penetrating Sr-90 beta-rays and the ALIBAVA fast readout system for the miniature sensors of 1 cm xl cm in area. The samples were irradiated by protons in the 27 MeV Birmingham Cyclotron, the 70 MeV CYRIC at Tohoku University, and the 24 GeV CERN-PS, and by neutrons at Ljubljana TAIGA reactor for fluence values up to 2 x 10(15) n(eq)/cm(2). The change in the charge collection with fluence was found to be similar to the previous prototype ATLAS12, and acceptable for the ITk. Sensors with two active thicknesses, 300 μm (standard) and 240 μm (thin), were compared and the difference in the charge collection was observed to be small for bias voltages up to 500 V. Some samples were also irradiated with gamma radiation up to 2 MGy, and the full depletion voltage was found to decrease with the dose. This was caused by the Compton electrons due to the( 60)Co gamma radiation. To summarize, the design of the ATLAS17LS and technology for its fabrication have been verified for implementation in the ITk. We are in the stage of sensor pre-production with the first sensors already delivered in January of 2020.
Address [Hara, K.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan, Email: hara@hep.px.tsukuba.ac.jp
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000581808300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4606
Permanent link to this record
 

 
Author Cervello, A.; Carrio, F.; Garcia, R.; Martos, J.; Soret, J.; Torres, J.; Valero, A.
Title The TileCal PreProcessor interface with the ATLAS global data acquisition system at the HL-LHC Type Journal Article
Year 2022 Publication (up) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1043 Issue Pages 167492 - 2pp
Keywords ATLAS; Tile Calorimeter; HL-LHC; TilePPr; FELIX; SWROD; DAQ
Abstract The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. It will take place throughout 2026-2028, corresponding to the Long Shutdown 3. During this upgrade, the ATLAS Tile Hadronic Calorimeter (TileCal) will replace completely on-and off-detector electronics adopting a new read-out architecture. Signals captured from TileCal are digitized by the on-detector electronics and transmitted to the TileCal PreProcessor (TilePPr) located off-detector, which provides the interface with the ATLAS trigger and data acquisition systems.TilePPr receives, process and transmits the data from the on-detector system and transmits it to the Front -End Link eXchange (FELIX) system. FELIX is the ATLAS common hardware in all the subdetectors designed to act as a data router, receiving and forwarding data to the SoftWare Read-Out Driver (SWROD) computers. FELIX also distributes the Timing, Trigger and Control (TTC) signals to the TilePPr to be propagated to the on-detector electronics. The SWROD is an ATLAS common software solution to perform detector specific data processing, including configuration, calibration, control and monitoring of the partitionIn this contribution we will introduce the new read-out elements for TileCal at the HL-LHC, the intercon-nection between the off-detector electronics and the FELIX system, the configuration and implementation for the test beam campaigns, as well as future developments of the preprocessing and monitoring status of the calorimeter modules through the SWROD infrastructure.
Address [Cervello, Antonio; Carrio, Fernando; Valero, Alberto] UV, CSIC, Inst Fis Corpuscular, Carrer Catedrat Jose Beltran Martinez 2, Valencia 46980, Spain, Email: antonio.cervello@uv.es
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000868495700012 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5399
Permanent link to this record
 

 
Author Latonova, V. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.; Soldevila, U.
Title Characterization of the polysilicon resistor in silicon strip sensors for ATLAS inner tracker as a function of temperature, pre- and post-irradiation Type Journal Article
Year 2023 Publication (up) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1050 Issue Pages 168119 - 5pp
Keywords HL-LHC; ATLAS ITk; Silicon micro-strip sensor; Polysilicon bias resistor; Testchip
Abstract The high luminosity upgrade of the Large Hadron Collider, foreseen for 2029, requires the replacement of the ATLAS Inner Detector with a new all-silicon Inner Tracker (ITk). The expected ultimate total integrated luminosity of 4000 fb(-1) means that the strip part of the ITk detector will be exposed to the total particle fluences and ionizing doses reaching the values of 1.6 center dot 10(15) MeVn(eq)/cm(2) and 0.66MGy, respectively, including a safety factor of 1.5. Radiation hard n(+)-in-p micro-strip sensors were developed by the ATLAS ITk strip collaboration and are produced by Hamamatsu Photonics K.K. The active area of each ITk strip sensor is delimited by the n-implant bias ring, which is connected to each individual n(+) implant strip by a polysilicon bias resistor. The total resistance of the polysilicon bias resistor should be within a specified range to keep all the strips at the same potential, prevent the signal discharge through the grounded bias ring and avoid the readout noise increase. While the polysilicon is a ubiquitous semiconductor material, the fluence and temperature dependence of its resistance is not easily predictable, especially for the tracking detector with the operational temperature significantly below the values typical for commercial microelectronics. Dependence of the resistance of polysilicon bias resistor on the temperature, as well as on the total delivered fluence and ionizing dose, was studied on the specially-designed test structures called ATLAS Testchips, both before and after their irradiation by protons, neutrons, and gammas to the maximal expected fluence and ionizing dose. The resistance has an atypical negative temperature dependence. It is different from silicon, which shows that the grain boundary has a significant contribution to the resistance. We discuss the contributions by parameterizing the activation energy of the polysilicon resistance as a function of the temperature for unirradiated and irradiated ATLAS Testchips.
Address [Latonova, V.; Federicova, P.; Kroll, J.; Kvasnicka, J.; Mikestikova, M.] Acad Sci Czech Republ, Inst Phys, Slovance 2, Prague 8, Czech Republic, Email: vera.latonova@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001035405300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5601
Permanent link to this record
 

 
Author Miyagawa, P.S. et al; Bernabeu, P.; Lacasta, C.; Solaz, C.; Soldevila, U.
Title Analysis of the results from Quality Control tests performed on ATLAS18 Strip Sensors during on-going production Type Journal Article
Year 2024 Publication (up) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1064 Issue Pages 169457 - 9pp
Keywords HL-LHC; ATLAS; ITk; Strip sensors
Abstract The ATLAS experiment will replace its existing Inner Detector with the new all -silicon Inner Tracker (ITk) to cope with the operating conditions of the forthcoming high -luminosity phase of the LHC (HL-LHC). The outer regions of the ITk will be instrumented with similar to 18000 ATLAS18 strip sensors fabricated by Hamamatsu Photonics K.K. (HPK). With the launch of full-scale sensor production in 2021, the ITk strip sensor community has undertaken quality control (QC) testing of these sensors to ensure compliance with mechanical and electrical specifications agreed with HPK. The testing is conducted at seven QC sites on each of the monthly deliveries of similar to 500 sensors. This contribution will give an overview of the QC procedures and analysis; the tests most likely to determine pass/fail for a sensor are IV, long-term leakage current stability, full strip test and visual inspection. The contribution will then present trends in the results and properties following completion of similar to 60% of production testing. It will also mention challenges overcome through collaborative efforts with HPK during the early phases of production. With less than 5% of sensors rejected by QC testing, the overall production quality has been very good.
Address [Miyagawa, P. S.; Beck, G. A.; Bevan, A. J.; Chen, Z.; Dawson, I.; Zenz, S. C.] Queen Mary Univ London, Particle Phys Res Ctr, GO Jones Bldg, Mile End Rd, London E14NS, England, Email: paul.miyagawa@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001249611300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6158
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Amoros, G.; Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estañ, M.T.; Ros, E.; Salt, J.; Solans, C.A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.
Title Measurement of the production cross section for W-bosons in association with jets in pp collisions at root s=7 TeV with the ATLAS detector Type Journal Article
Year 2011 Publication (up) Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 698 Issue 5 Pages 325-345
Keywords W-boson; Jets; ATLAS; LHC; Proton-proton; 7 TeV
Abstract This Letter reports on a first measurement of the inclusive W + jets cross section in proton-proton collisions at a centre-of-mass energy of 7 TeV at the LHC, with the ATLAS detector. Cross sections, in both the electron and muon decay modes of the W-boson, are presented as a function of jet multiplicity and of the transverse momentum of the leading and next-to-leading jets in the event. Measurements are also presented of the ratio of cross sections sigma (W + >= n)/sigma(W + >= n – 1) for inclusive jet multiplicities n = 1-4. The results, based on an integrated luminosity of 1.3 pb(-1), have been corrected for all known detector effects and are quoted in a limited and well-defined range of jet and lepton kinematics. The measured cross sections are compared to particle-level predictions based on perturbative QCD. Next-to-leading order calculations, studied here for n <= 2, are found in good agreement with the data. Leading-order multiparton event generators, normalized to the NNLO total cross section, describe the data well for all measured jet multiplicities.
Address [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Buckley, A. G.; Caron, S.; Carpentieri, C.; Christov, A.; Dahlhoff, A.; Dietrich, J.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Heldmann, M.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Koenig, S.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Maassen, M.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Bueso, X. Portell; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79104 Freiburg, Germany, Email: atlas.publications@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes ISI:000290185500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 628
Permanent link to this record