|   | 
Details
   web
Records
Author Rinaldi, M.; Vento, V.
Title Meson and glueball spectroscopy within the graviton soft wall model Type Journal Article
Year 2021 Publication (down) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 104 Issue 3 Pages 034016 - 17pp
Keywords
Abstract The graviton soft wall (GSW) model provides a unified description of the scalar glueball and meson spectra with a unique energy scale. This success has led us to extend the analysis to the description of the spectra of other hadrons. We use this model to calculate masses of the odd and even ground states of glueballs for various spins, and show that the GSW model is able to reproduce the Regge trajectory of these systems. In addition, the spectra of the rho, a(1 )and eta mesons will be addressed. Results are in excellent agreement with current experimental data. Furthermore such an achievement is obtained without any additional parameters. Indeed, the only two parameters appearing in these spectra are those that were previously fixed by the light scalar meson and glueball spectra. Finally, in order to describe the pi meson spectrum, a suitable modification of the dilaton profile function has been included in the analysis to properly take into account the Goldstone realisation of chiral symmetry. The present investigation confirms that the GSW model provides an excellent description of the spectra of mesons and glueballs with only a small number of parameters unveiling a relevant predicting power.
Address [Rinaldi, Matteo] Univ Perugia, Dipartimento Fis & Geol, Ist Nazl Fis Nucl, Sect Perugia, Via A Pascoli, I-06123 Perugia, Italy, Email: matteo.rinaldi@pg.infn.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000686913200007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4945
Permanent link to this record
 

 
Author Rinaldi, M.; Vento, V.
Title Phase transition in the holographic hard-wall model Type Journal Article
Year 2023 Publication (down) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 11 Pages 114020 - 10pp
Keywords
Abstract A Hawking-Page phase transition between anti-de Sitter (AdS) thermal and AdS black hole was presented as a mechanism for explaining the QCD deconfinement phase transition within holographic models. In order to implement temperature dependence in the confined phase we use a hard-wall AdS/QCD model, where the geometry at low temperatures is described also by a black hole metric. We then investigate the temperature dependence of glueball states described as gravitons propagating in deformed background spaces. Finally, we use potential models to physically describe the implications of our study.
Address [Rinaldi, Matteo] INFN, Sect Perugia, Via A Pascoli, I-06123 Perugia, Italy, Email: matteo.rinaldi@pg.infn.it
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001163660300007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5955
Permanent link to this record
 

 
Author Park, B.Y.; Paeng, W.G.; Vento, V.
Title The inhomogeneous phase of dense skyrmion matter Type Journal Article
Year 2019 Publication (down) Nuclear Physics A Abbreviated Journal Nucl. Phys. A
Volume 989 Issue Pages 231-245
Keywords Skyrmion; Dense matter; Phase transition
Abstract It was predicted qualitatively in ref. [I] that skyrmion matter at low density is stable in an inhomogeneous phase where skyrmions condensate into lumps while the remaining space is mostly empty. The aim of this paper is to proof quantitatively this prediction. In order to construct an inhomogeneous medium we distort the original FCC crystal to produce a phase of planar structures made of skyrmions. We implement mathematically these planar structures by means of the 't Hooft instanton solution using the Atiyah-Manton ansatz. The results of our calculation of the average density and energy confirm the prediction suggesting that the phase diagram of the dense skyrmion matter is a lot more complex than a simple phase transition from the skyrmion FCC crystal lattice to the half-skyrmion CC one. Our results show that skyrmion matter shares common properties with standard nuclear matter developing a skin and leading to a binding energy equation which resembles the Weiszacker mass formula.
Address [Park, Byung-Yoon] Chungnam Natl Univ, Dept Phys, Daejon 305764, South Korea, Email: bypark@cnu.ac.kr;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9474 ISBN Medium
Area Expedition Conference
Notes WOS:000478705300016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4098
Permanent link to this record
 

 
Author MoEDAL Collaboration (Acharya, B. et al); Mitsou, V.A.; Papavassiliou, J.; Ruiz de Austri, R.; Santra, A.; Vento, V.; Vives, O.
Title Search for magnetic monopoles produced via the Schwinger mechanism Type Journal Article
Year 2022 Publication (down) Nature Abbreviated Journal Nature
Volume 602 Issue 7895 Pages 63-67
Keywords
Abstract Electrically charged particles can be created by the decay of strong enough electric fields, a phenomenon known as the Schwinger mechanism(1). By electromagnetic duality, a sufficiently strong magnetic field would similarly produce magnetic monopoles, if they exist(2). Magnetic monopoles are hypothetical fundamental particles that are predicted by several theories beyond the standard model(3-7) but have never been experimentally detected. Searching for the existence of magnetic monopoles via the Schwinger mechanism has not yet been attempted, but it is advantageous, owing to the possibility of calculating its rate through semi-classical techniques without perturbation theory, as well as that the production of the magnetic monopoles should be enhanced by their finite size(8,9) and strong coupling to photons(2,10). Here we present a search for magnetic monopole production by the Schwinger mechanism in Pb-Pb heavy ion collisions at the Large Hadron Collider, producing the strongest known magnetic fields in the current Universe(11). It was conducted by the MoEDAL experiment, whose trapping detectors were exposed to 0.235 per nanobarn, or approximately 1.8 x 10(9), of Pb-Pb collisions with 5.02-teraelectronvolt center-of-mass energy per collision in November 2018. A superconducting quantum interference device (SQUID) magnetometer scanned the trapping detectors of MoEDAL for the presence of magnetic charge, which would induce a persistent current in the SQUID. Magnetic monopoles with integer Dirac charges of 1, 2 and 3 and masses up to 75 gigaelectronvolts per speed of light squared were excluded by the analysis at the 95% confidence level. This provides a lower mass limit for finite-size magnetic monopoles from a collider search and greatly extends previous mass bounds.
Address [Acharya, B.; Alexandre, J.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Phys Dept, Theoret Particle Phys & Cosmol Grp, London, England
Corporate Author Thesis
Publisher Nature Portfolio Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes WOS:000750429600019 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5191
Permanent link to this record
 

 
Author Ayala, C.; Gonzalez, P.; Vento, V.
Title Heavy quark potential from QCD-related effective coupling Type Journal Article
Year 2016 Publication (down) Journal of Physics G Abbreviated Journal J. Phys. G
Volume 43 Issue 12 Pages 125002 - 12pp
Keywords general properties of QCD; potential models; other non-perturbative calculations; heavy quarkonia
Abstract We implement our past investigations of quark-antiquark interaction through a non-perturbative running coupling defined in terms of a gluon mass function, similar to that used in some Schwinger-Dyson approaches. This coupling leads to a quark-antiquark potential, which satisfies not only asymptotic freedom but also describes linear confinement correctly. From this potential, we calculate the bottomonium and charmonium spectra below the first open flavor meson-meson thresholds and show that for a small range of values of the free parameter determining the gluon mass function an excellent agreement with data is attained.
Address [Gonzalez, Pedro] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: Pedro.Gonzalez@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0954-3899 ISBN Medium
Area Expedition Conference
Notes WOS:000388219700001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2870
Permanent link to this record