|   | 
Details
   web
Records
Author Donini, A.; Marimon, S.G.
Title Micro-orbits in a many-brane model and deviations from Newton's 1/r(2) law Type Journal Article
Year 2016 Publication (down) European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 76 Issue 12 Pages 696 - 21pp
Keywords
Abstract We consider a five-dimensional model with geometry M = M-4 x S-1, with compactification radius R. The Standard Model particles are localized on a brane located at y = 0, with identical branes localized at different points in the extra dimension. Objects located on our brane can orbit around objects located on a brane at a distance d = y/R, with an orbit and a period significantly different from the standard Newtonian ones. We study the kinematical properties of the orbits, finding that it is possible to distinguish one motion from the other in a large region of the initial conditions parameter space. This is a warm-up to study if a SM-like mass distribution on one (or more) distant brane(s) may represent a possible dark matter candidate. After using the same technique to the study of orbits of objects lying on the same brane (d = 0), we apply this method to the detection of generic deviations from the inverse-square Newton law. We propose a possible experimental setup to look for departures from Newtonian motion in the micro-world, finding that an order of magnitude improvement on present bounds can be attained at the 95% CL under reasonable assumptions.
Address [Donini, A.; Marimon, S. G.] Univ Valencia, CSIC, Inst Fis Corpuscular, Apartado Correos 22085, Valencia 46071, Spain, Email: donini@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000399840900001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3062
Permanent link to this record
 

 
Author Donini, A.; Hernandez, P.; Pena, C.; Romero-Lopez, F.
Title Dissecting the Delta I=1/2 rule at large N-c Type Journal Article
Year 2020 Publication (down) European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 80 Issue 7 Pages 638 - 12pp
Keywords
Abstract We study the scaling of kaon decay amplitudes with the number of colours, N-c, in a theory with four degenerate flavours, N-f = 4. In this scenario, two current-current operators, Q(+/-), mediate Delta S = 1 transitions, such as the two isospin amplitudes of non-leptonic kaon decays for K -> (pi pi)(I=0,2), A(0) and A(2.) In particular, we concentrate on the simpler K -> pi amplitudes, A(+/-), mediated by these two operators. A diagrammatic analysis of the large-N-c scaling of these observables is presented, which demonstrates the anticorrelation of the leading O(1/N-c) and O(N-f/N-c(2)) corrections in both amplitudes. Using our new N-f = 4 and previous quenched data, we confirm this expectation and show that these corrections are naturally large and may be at the origin of the Delta I = 1/2 rule. The evidence for the latter is indirect, based on the matching of the amplitudes to their prediction in Chiral Perturbation Theory, from which the LO low-energy couplings of the chiral weak Hamiltonian, g(+/-), can be determined. A NLO estimate of the K -> (pi pi)(I=0,2) isospin amplitudes can then be derived, which is in good agreement with the experimental value.
Address [Donini, Andrea; Hernandez, Pilar; Romero-Lopez, Fernando] IFIC CSIC UVEG, Edificio Inst Invest,Apt 22085, Valencia 46071, Spain, Email: fernando.romero@uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000552393200003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4480
Permanent link to this record
 

 
Author Folgado, M.G.; Donini, A.; Rius, N.
Title Spin-dependence of gravity-mediated dark matter in warped extra-dimensions Type Journal Article
Year 2021 Publication (down) European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 81 Issue 3 Pages 197 - 13pp
Keywords
Abstract We study the possibility that Dark Matter (DM) particles of spin 0, 1/2 or 1 may interact gravitationally with Standard Model (SM) particles within the framework of a warped Randall-Sundrum (RS) model. Both the Dark Matter and the Standard Model particles are assumed to be confined to the infra-red (IR) brane and only interchange Kaluza-Klein excitations of the graviton and the radion (adopting the Goldberger-Wise mechanism to stabilize the size of the extra-dimension). We analyze the different DM annihilation channels and find that the presently observed Dark Matter relic abundance, Omega DM, can be obtained within the freeze-out mechanism for DM particles of all considered spins. This extends our first work concerning scalar DM in RS scenarios (Folgado et al., in JHEP 01:161. https://doi.org/10.1007/JHEP01(2020)161, 2020) and put it on equal footing with our second work in which we studied DM particles of spin 0, 1/2 and 1 in the framework of the Clockwork/Linear Dilaton (CW/LD) model (Folgado et al., in JHEP 20:036. https://doi.org/10.1007/JHEP04(2020)036, 2020). We study the region of the model parameter space for which Omega DM is achieved and compare it with the different experimental and theoretical bounds. We find that, for DM particles mass mDM is an element of [1,15] TeV, most of the parameter space is excluded by the current constraints or will be excluded by the LHC Run III or by the LHC upgrade, the HL-LHC. The observed DM relic abundance can still be achieved for DM masses mDM is an element of [4,15] TeV and mG1<10 TeV for scalar and vector boson Dark Matter. On the other hand, for spin 1/2 fermion Dark Matter, only a tiny region with mDM<is an element of>[4,15] TeV, mG1 is an element of [5,10] TeV and Lambda >mG1 is compatible with theoretical and experimental bounds. We have also studied the impact of the radion in the phenomenology, finding that it does not modify significantly the allowed region for DM particles of any spin (differently from the CW/LD case, where its impact was quite significant in the case of scalar DM). We, eventually, briefly compare results in RS with those obtained in the CW/LD model.
Address [Folgado, Miguel G.] Univ Valencia, CSIC, Dept Fis Teor, C Catedratico Jose Beltran 2, Paterna 46980, Spain, Email: migarfol@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000625431000001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4767
Permanent link to this record
 

 
Author Baeza-Ballesteros, J.; Donini, A.; Nadal-Gisbert, S.
Title Dynamical measurements of deviations from Newton's 1/r(2) law Type Journal Article
Year 2022 Publication (down) European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 82 Issue 2 Pages 154 - 30pp
Keywords
Abstract In Ref. Donini and Marimon (Eur Phys J C 76:696, arXiv:1609.05654, 2016), an experimental setup aiming at the measurement of deviations from the Newtonian 1/r(2) distance dependence of gravitational interactions was proposed. The theoretical idea behind this setup was to study the trajectories of a “Satellite” with a mass m(S) similar to O(10(-9)) g around a “Planet” with mass m(P) is an element of [10(-7), 10(-5)] g, looking for precession of the orbit. The observation of such feature induced by gravitational interactions would be an unambiguous indication of a gravitational potential with terms different from 1/r and, thus, a powerful tool to detect deviations from Newton's 1/r(2) law. In this paper we optimize the proposed setup in order to achieve maximal sensitivity to look for such Beyond-Newtonian corrections. We then study in detail possible background sources that could induce precession and quantify their impact on the achievable sensitivity. We finally conclude that a dynamical measurement of deviations from newtonianity can test Yukawa-like corrections to the 1/r potential with strength as low as alpha similar to 10(-2) for distances as small as lambda similar to 10 μm.
Address [Baeza-Ballesteros, J.; Donini, A.; Nadal-Gisbert, S.] Univ Valencia, Inst Fis Corpuscular, CSIC, Paterna 46980, Spain, Email: jorge.baeza@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000757843300001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5147
Permanent link to this record
 

 
Author Baeza-Ballesteros, J.; Donini, A.; Molina-Terriza, G.; Monrabal, F.; Simon, A.
Title Towards a realistic setup for a dynamical measurement of deviations from Newton's 1/r2 law: the impact of air viscosity Type Journal Article
Year 2024 Publication (down) European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 84 Issue 6 Pages 596 - 20pp
Keywords
Abstract A novel experimental setup to measure deviations from the 1/r(2) distance dependence of Newtonian gravity was proposed in Donini and Marimon (Eur Phys J C 76:696, 2016). The underlying theoretical idea was to study the orbits of a microscopically-sized planetary system composed of a “Satellite”, with mass m(S) similar to O(10-9) g, and a “Planet”, with mass M-P similar to O(10-5) g at an initial distance of hundreds of microns. The detection of precession of the orbit in this system would be an unambiguous indication of a central potential with terms that scale with the distance differently from 1/r. This is a huge advantage with respect to the measurement of the absolute strength of the attraction between two bodies, as most electrically-induced background potentials do indeed scale as 1/r. Detection of orbit precession is unaffected by these effects, allowing for better sensitivities. In Baeza-Ballesteros et al. (Eur Phys J C 82:154, 2022), the impact of other subleading backgrounds that may induce orbit precession, such as, e.g., the electrical Casimir force or general relativity, was studied in detail. It was found that the proposed setup could test Yukawa-like corrections, alpha x exp(-r/lambda), to the 1/r potential with couplings as low as alpha similar to 10(-2) for distances as small as lambda similar to 10 μm, improving by roughly an order of magnitude present bounds. In this paper, we start to move from a theoretical study of the proposal to a more realistic implementation of the experimental setup. As a first step, we study the impact of air viscosity on the proposed setup and see how the setup should be modified in order to preserve the theoretical sensitivity achieved in Donini and Marimon (2016) and Baeza-Ballesteros et al. (2022).
Address [Baeza-Ballesteros, J.; Donini, A.] Univ Valencia, Inst Fis Corpuscular, CSIC, Calle Catedrat Jose Beltran Martinez 2, Paterna 46980, Spain, Email: jorge.baeza@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:001243830900015 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6156
Permanent link to this record