toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Martin Lozano, V.; Sanda Seoane, R.M.; Zurita, J. url  doi
openurl 
  Title Z'-explorer 2.0: Reconnoitering the dark matter landscape Type Journal Article
  Year 2023 Publication (up) Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 288 Issue Pages 108729 - 14pp  
  Keywords LHC; New physics; Exclusion limits; Dark matter  
  Abstract We introduce version 2.0 of Z'-explorer, a software tool that provides a simple, fast, and user-friendly test of models with an extra U (1) gauge boson (Z') against experimental LHC results. The main novelty of the second version is the inclusion of missing energy searches, as the first version only included final states into SM particles. Hence Z'-explorer 2.0 is able to test dark matter models where the Z' acts as an s-channel mediator between the Standard Model and the dark sector, a widespread benchmark employed by the ATLAS and CMS experimental collaborations. To this end, we perform here the first public reinterpretation of the most recent ATLAS mono-jet search with 139 fb-1. In addition, the corresponding searches in the visible final states have also been updated. We illustrate the power of our code by re -obtaining public plots and also showing novel results. In particular, we study the cases where the Z' couples strongly to top quarks (top-philic), where dark matter couples with a mixture of vector and axial-vector couplings, and also perform a scan in the parameter space of a string inspired Stuckelberg model. Z'-explorer 2.0 is publicly available on GitHub. Program summary Program Title: Z'-explorer 2.0 CPC Library link to program files: https://doi .org /10 .17632 /k7tdp8kwgf .2 Developer's repository link: https://github .com /ro -sanda /Z--explorer-2 .0 Licensing provisions: GPLv3 Programming language: C++ and bash Nature of problem: New SM neutral gauge bosons, Z', are ubiquitously present in models of New Physics. In order to confront these models versus a large and ever-growing library of LHC searches, Z'-explorer 1.0 had already included all final states including Standard Model particles. Notably, the previous version of this tool lacked the so-called invisible final states manifested as a momentum imbalance in the transverse plane (“missing energy”). These searches help to probe mediators into a dark sector, where a dark matter candidate resides. Solution method: Z'-explorer encodes the production cross sections for Z' bosons at the LHC as a function of their mass, allowing for a fast evaluation of the exclusion limits. This version of Z'-explorer includes a careful validation of the latest search with one energetic jet (mono-jet) performed by the ATLAS collaboration. Hence one can now test if a given point in parameter space is excluded by both visible and invisible searches. The modular structure of the code has been kept, which allows for potential additions (low-energy constraints, flavor, extrapolation to future colliders).  
  Address [Lozano, Victor Martin] DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: victor.lozano@desy.de;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000969171700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5515  
Permanent link to this record
 

 
Author KM3NeT Collaboration (Aiello, S. et al); Alves Garre, S.; Calvo, D.; Carretero, V.; Garcia Soto, A.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Lazo, A.; Lessing, N.; Manczak, J.; Palacios Gonzalez, J.; Pastor Gomez, E.J.; Rahaman, U.; Real, D.; Saina, A.; Salesa Greus, F.; Sanchez Losa, A.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Embedded software of the KM3NeT central logic board Type Journal Article
  Year 2024 Publication (up) Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 296 Issue Pages 109036 - 15pp  
  Keywords Embedded software; Neutrino detectors; Synchronization networks  
  Abstract The KM3NeT Collaboration is building and operating two deep sea neutrino telescopes at the bottom of the Mediterranean Sea. The telescopes consist of latices of photomultiplier tubes housed in pressure-resistant glass spheres, called digital optical modules and arranged in vertical detection units. The two main scientific goals are the determination of the neutrino mass ordering and the discovery and observation of high-energy neutrino sources in the Universe. Neutrinos are detected via the Cherenkov light, which is induced by charged particles originated in neutrino interactions. The photomultiplier tubes convert the Cherenkov light into electrical signals that are acquired and timestamped by the acquisition electronics. Each optical module houses the acquisition electronics for collecting and timestamping the photomultiplier signals with one nanosecond accuracy. Once finished, the two telescopes will have installed more than six thousand optical acquisition nodes, completing one of the more complex networks in the world in terms of operation and synchronization. The embedded software running in the acquisition nodes has been designed to provide a framework that will operate with different hardware versions and functionalities. The hardware will not be accessible once in operation, which complicates the embedded software architecture. The embedded software provides a set of tools to facilitate remote manageability of the deployed hardware, including safe reconfiguration of the firmware. This paper presents the architecture and the techniques, methods and implementation of the embedded software running in the acquisition nodes of the KM3NeT neutrino telescopes. Program summary Program title: Embedded software for the KM3NeT CLB CPC Library link to program files: https://doi.org/10.17632/s847hpsns4.1 Licensing provisions: GNU General Public License 3 Programming language: C Nature of problem: The challenge for the embedded software in the KM3NeT neutrino telescope lies in orchestrating the Digital Optical Modules (DOMs) to achieve the synchronized data acquisition of the incoming optical signals. The DOMs are the crucial component responsible for capturing neutrino interactions deep underwater. The embedded software must configure and precisely time the operation of each DOM. Any deviation or timing mismatch could compromise data integrity, undermining the scientific value of the experiment. Therefore, the embedded software plays a critical role in coordinating, synchronizing, and operating these modules, ensuring they work in unison to capture and process neutrino signals accurately, ultimately advancing our understanding of fundamental particles in the Universe. Solution method: The embedded software on the DOMs provides a solution based on a C-based bare-metal application, operating without a real-time embedded OS. It is loaded into the RAM during FPGA configuration, consuming less than 256 kB of RAM. The software architecture comprises two layers: system software and application. The former offers OS-like features, including a multitasking scheduler, firmware updates, peripheral drivers, a UDP-based network stack, and error handling utilities. The application layer contains a state machine ensuring consistent program states. It is navigated via slow control events, including external inputs and autonomous responses. Subsystems within the application code control specific acquisition electronics components via the associated driver abstractions. Additional comments including restrictions and unusual features: Due to the operation conditions of the neutrino telescope, where access is restricted, the embedded software implements a fail-safe procedure to reconfigure the firmware where the embedded software runs.  
  Address [Aiello, S.; Bruno, R.; Leonora, E.; Longhitano, F.; Randazzo, N.; Sinopoulou, A.; Tosta e Melo, I] Ist Nazl Fis Nucl, Sez Catania, Via Santa Sofia 64, I-95123 Catania, Italy, Email: km3net-pc@km3net.de;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001162587500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5961  
Permanent link to this record
 

 
Author Oliver, S.; Rodriguez Bosca, S.; Gimenez-Alventosa, V. doi  openurl
  Title Enabling particle transport on CAD-based geometries for radiation simulations with penRed Type Journal Article
  Year 2024 Publication (up) Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 298 Issue Pages 109091 - 11pp  
  Keywords Radiation transport; PENELOPE physics; Monte Carlo simulation; PenRed; CAD; Triangular surface mesh  
  Abstract Geometry construction is a fundamental aspect of any radiation transport simulation, regardless of the Monte Carlo code being used. Typically, this process is tedious, time-consuming, and error-prone. The conventional approach involves defining geometries using mathematical objects or surfaces. However, this method comes with several limitations, especially when dealing with complex models, particularly those with organic shapes. Furthermore, since each code employs its own format and methodology for defining geometries, sharing and reproducing simulations among researchers becomes a challenging task. Consequently, many codes have implemented support for simulating over geometries constructed via Computer-Aided Design (CAD) tools. Unfortunately, this feature is lacking in penRed and other PENELOPE physics-based codes. Therefore, the objective of this work is to implement such support within the penRed framework. New version program summary Program Title: Parallel Engine for Radiation Energy Deposition (penRed) CPC Library link to program files: https://doi.org/10.17632/rkw6tvtngy.2 Developer's repository link: https://github.com/PenRed/PenRed Code Ocean capsule: https://codeocean.com/capsule/1041417/tree Licensing provisions: GNU Affero General Public License v3 Programming language: C++ standard 2011. Journal reference of previous version: V. Gimenez-Alventosa, V. Gimenez Gomez, S. Oliver, PenRed: An extensible and parallel Monte-Carlo framework for radiation transport based on PENELOPE, Computer Physics Communications 267 (2021) 108065. doi:https://doi.org/10.1016/j.cpc.2021.108065. Does the new version supersede the previous version?: Yes Reasons for the new version: Implements the capability to simulate on CAD constructed geometries, among many other features and fixes. Summary of revisions: All changes applied through the code versions are summarized in the file CHANGELOG.md in the repository package. Nature of problem: While Monte Carlo codes have proven valuable in simulating complex radiation scenarios, they rely heavily on accurate geometrical representations. In the same way as many other Monte Carlo codes, penRed employs simple geometric quadric surfaces like planes, spheres and cylinders to define geometries. However, since these geometric models offer a certain level of flexibility, these representations have limitations when it comes to simulating highly intricate and irregular shapes. Anatomic structures, for example, require detailed representations of organs, tissues and bones, which are difficult to achieve using basic geometric objects. Similarly, complex devices or intricate mechanical systems may have designs that cannot be accurately represented within the constraints of such geometric models. Moreover, when the complexity of the model increases, geometry construction process becomes more difficult, tedious, time-consuming and error-prone [2]. Also, as each Monte Carlo geometry library uses its own format and construction method, reproducing the same geometry among different codes is a challenging task. Solution method: To face the problems stated above, the objective of this work is to implement the capability to simulate using irregular and adaptable meshed geometries in the penRed framework. This kind of meshes can be constructed using Computer-Aided Design (CAD) tools, the use of which is very widespread and streamline the design process. This feature has been implemented in a new geometry module named “MESH_BODY” specific for this kind of geometries. This one is freely available and usable within the official penRed package1. It can be used since penRed version 1.9.3b and above.  
  Address [Oliver, S.] Univ Politecn Valencia, Inst Seguridad Ind Radiofis & Medioambiental ISIRY, Cami Vera S-N, Valencia 46022, Spain  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001172840800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6077  
Permanent link to this record
 

 
Author Barberis, D. et al; Fernandez Casani, A.; Garcia Montoro, C.; Gonzalez de la Hoz, S.; Salt, J.; Sanchez, J.; Villaplana Perez, M. url  doi
openurl 
  Title The ATLAS EventIndex: A BigData Catalogue for All ATLAS Experiment Events Type Journal Article
  Year 2023 Publication (up) Computing and Software for Big Science Abbreviated Journal Comput. Softw. Big Sci.  
  Volume 7 Issue Pages 2 - 21pp  
  Keywords  
  Abstract The ATLAS EventIndex system comprises the catalogue of all events collected, processed or generated by the ATLAS experiment at the CERN LHC accelerator, and all associated software tools to collect, store and query this information. ATLAS records several billion particle interactions every year of operation, processes them for analysis and generates even larger simulated data samples; a global catalogue is needed to keep track of the location of each event record and be able to search and retrieve specific events for in-depth investigations. Each EventIndex record includes summary information on the event itself and the pointers to the files containing the full event. Most components of the EventIndex system are implemented using BigData free and open-source software. This paper describes the architectural choices and their evolution in time, as well as the past, current and foreseen future implementations of all EventIndex components.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6079  
Permanent link to this record
 

 
Author ANTARES Collaboration (van Haren, H. et al); Aguilar, J.A.; Bigongiari, C.; Dornic, D.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Mangano, S.; Salesa, F.; Toscano, S.; Yepes, H.; Zornoza, J.D.; Zuñiga, J. url  doi
openurl 
  Title Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea Type Journal Article
  Year 2011 Publication (up) Deep-Sea Research Part I-Oceanographic Research Papers Abbreviated Journal Deep-Sea Res. Part I-Oceanogr. Res. Pap.  
  Volume 58 Issue 8 Pages 875-884  
  Keywords Acoustic ADCP observations; Optical photo-multiplier observations; Deep Mediteranean; ANTARES neutrino telescope; Episodic downward current; Bioluminescence; Dense water formation; Northern boundary current  
  Abstract An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site of the ANTARES neutrino telescope near Toulon, France, thus providing a unique opportunity to compare high-resolution acoustic and optical observations between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward vertical currents of magnitudes up to 0.03 m s(-1) in late winter and early spring 2006. In the same period, observations were made of enhanced levels of acoustic reflection, interpreted as suspended particles including zooplankton, by a factor of about 10 and of horizontal currents reaching 0.35 m s(-1). These observations coincided with high light levels detected by the telescope, interpreted as increased bioluminescence. During winter 2006 deep dense-water formation occurred in the Ligurian subbasin, thus providing a possible explanation for these observations. However, the 10-20 days quasi-periodic episodes of high levels of acoustic reflection, light and large vertical currents continuing into the summer are not direct evidence of this process. It is hypothesized that the main process allowing for suspended material to be moved vertically later in the year is local advection, linked with topographic boundary current instabilities along the rim of the 'Northern Current'.  
  Address [van Haren, H] Royal Netherlands Inst Sea Res NIOZ, NL-1797 SZ T Horntje, Texel, Netherlands, Email: hans.van.haren@nioz.nl  
  Corporate Author Thesis  
  Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0967-0637 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000295115400006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 770  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva