|   | 
Details
   web
Records
Author ANTARES, IceCube, LIGO and Virgo Collaborations (Albert, A. et al); Barrios-Marti, J.; Hernandez-Rey, J.J.; Illuminati, G.; Lotze, M.; Sanchez-Losa, A.; Tönnis, C.; Zornoza, J.D.; Zuñiga, J.
Title Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube Type Journal Article
Year 2017 Publication (down) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 2 Pages 022005 - 15pp
Keywords
Abstract The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by ANTARES, within +/- 500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission from GW151226, adopting the GW event's 3D localization, to less than 2 x 10(51)-2 x 10(54) erg.
Address [Albert, A.; Drouhin, D.; Racca, C.] Univ Haute Alsace, Inst Univ Technol Colmar, GRPHE, 34 Rue Grillenbreit BP 50568, F-68008 Colmar, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000405365800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3216
Permanent link to this record
 

 
Author Gambino, P.; Melis, A.; Simula, S.
Title Extraction of heavy-quark-expansion parameters from unquenched lattice data on pseudoscalar and vector heavy-light meson masses Type Journal Article
Year 2017 Publication (down) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 1 Pages 014511 - 17pp
Keywords
Abstract We present a precise lattice computation of pseudoscalar and vector heavy-light meson masses for heavy-quark masses ranging from the physical charm mass up to similar or equal to 4 times the physical b-quark mass. We employ the gauge configurations generated by the European Twisted Mass Collaboration (ETMC) with N-f = 2 + 1 + 1 dynamical quarks at three values of the lattice spacing (a similar or equal to 0.062; 0.082; 0.089 fm) with pion masses in the range M-pi similar or equal to 210-450 MeV. The heavy-quark mass is simulated directly on the lattice up to similar or equal to 3 times the physical charm mass. The interpolation to the physical b-quark mass is performed using the ETMC ratio method, based on ratios of the meson masses computed at nearby heavy-quark masses, and adopting the kinetic mass scheme. The extrapolation to the physical pion mass and to the continuum limit yields m(b)(kin) (1 GeV) = 4.61(20) GeV, which corresponds to (m) over bar (b) ((m) over bar (b)) 4.26(18) GeV in the (MS) over bar scheme. The lattice data are analyzed in terms of the heavy-quark expansion (HQE) and the matrix elements of dimension-four and dimension-five operators are extracted with a good precision, namely,(Lambda) over bar = 0.552(26) GeV, mu(2)(pi) = 0.321(32) GeV2, and mu(2)(G)(m(b)) = 0.253(25) GeV2. The data also allow for a rough estimate of the dimension-six operator matrix elements. As the HQE parameters play a crucial role in the inclusive determination of the Cabibbo-Kobayashi-Maskawa matrix elements V-ub and V-cb, their precise determination on the lattice may eventually validate and improve the analyses based on fits to the semileptonic moments.
Address [Gambino, P.] Univ Turin, Dipartimento Fis, Via P Giuria 1, I-10125 Turin, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000406298500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3224
Permanent link to this record
 

 
Author T2K Collaboration (Abe, K. et al); Cervera-Villanueva, A.; Izmaylov, A.; Novella, P.; Sorel, M.
Title Updated T2K measurements of muon neutrino and antineutrino disappearance using 1.5 x 10(21) protons on target Type Journal Article
Year 2017 Publication (down) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 1 Pages 011102 - 9pp
Keywords
Abstract We report measurements by the T2K experiment of the parameters theta(23) and Delta m(32)(2) governing the disappearance of muon neutrinos and antineutrinos in the three-flavor neutrino oscillation model. Utilizing the ability of the experiment to run with either a mainly neutrino or a mainly antineutrino beam, the parameters are measured separately for neutrinos and antineutrinos. Using 7.482 x 10(20) POT in neutrino running mode and 7.471 x 10(20) POT in antineutrino mode, T2K obtained sin(2) (theta(23)) = 0.51(-0.07)(+0.08) and Delta (m) over bar (2)(32) = (+0.15)(-2.53) -0.13 x 10(-3) eV(2)/c(4) for neutrinos, and sin(2) ((theta) over bar (23)) = 0.42(-0.07)(+0.25) and Delta(m) over bar (2)(32) = 2.55(-0.27)(+0.33) x 10(-3) eV(2)/c(4) for antineutrinos (assuming normal mass ordering). No significant differences between the values of the parameters describing the disappearance of muon neutrinos and antineutrinos were observed.
Address [Ariga, A.; Ereditato, A.; Koller, P. P.; Nirkko, M.; Pistillo, C.; Redij, A.; Wilkinson, C.] Univ Bern, Albert Einstein Ctr Fundamental Phys, High Energy Phys Lab, Bern, Switzerland
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000406639300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3228
Permanent link to this record
 

 
Author ATLAS Collaboration (Aaboud, M. et al); Alvarez Piqueras, D.; Barranco Navarro, L.; Cabrera Urban, S.; Castillo Gimenez, V.; Cerda Alberich, L.; Costa, M.J.; Fernandez Martinez, P.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Jimenez Pena, J.; King, M.; Lacasta, C.; Lacuesta, V.R.; Mamuzic, J.; Marti-Garcia, S.; Melini, D.; Mitsou, V.A.; Pedraza Lopez, S.; Rodriguez Rodriguez, D.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Valero, A.; Valls Ferrer, J.A.; Vos, M.
Title Measurement of (WW +/-)-W-+/- vector-boson scattering and limits on anomalous quartic gauge couplings with the ATLAS detector Type Journal Article
Year 2017 Publication (down) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 1 Pages 012007 - 34pp
Keywords
Abstract This paper presents the extended results of measurements of (WW +/-)-W-+/- jj production and limits on anomalous quartic gauge couplings using 20.3 fb(-1) of proton-proton collision data at root s = 8 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with two leptons (e or mu) with the same electric charge and at least two jets are analyzed. Production cross sections are determined in two fiducial regions, with different sensitivities to the electroweak and strong production mechanisms. An additional fiducial region, particularly sensitive to anomalous quartic gauge coupling parameters alpha 4 and alpha 5, is introduced, which allows more stringent limits on these parameters compared to the previous ATLAS measurement.
Address [Chelkov, G. A.; Jackson, P.; Lee, L.; Petridis, A.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000406540300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3231
Permanent link to this record
 

 
Author Aguilar, A.C.; Cardona, J.C.; Ferreira, M.N.; Papavassiliou, J.
Title Non-Abelian Ball-Chiu vertex for arbitrary Euclidean momenta Type Journal Article
Year 2017 Publication (down) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 96 Issue 1 Pages 014029 - 29pp
Keywords
Abstract We determine the non-Abelian version of the four nontransverse form factors of the quark-gluon vertex, using exact expressions derived from the Slavnov-Taylor identity that this vertex satisfies. In addition to the quark and ghost propagators, a key ingredient of the present approach is the quark-ghost scattering kernel, which is computed within the one-loop dressed approximation. The vertex form factors obtained from this procedure are evaluated for arbitrary Euclidean momenta, and display features not captured by the well-known Ball-Chiu vertex, deduced from the Abelian (ghost-free) Ward identity. Particularly interesting in this analysis is the so-called soft-gluon limit, which, unlike other kinematic configurations considered, is especially sensitive to the approximations employed for the vertex entering in the quark-ghost scattering kernel, and may even be affected by a subtle numerical instability. As an elementary application of the results obtained, we evaluate and compare certain renormalization-point-independent combinations, which contribute to the interaction kernels appearing in the standard quark gap and Bethe-Salpeter equations. In doing so, even though all form factors of the quark-gluon vertex, and in particular the transverse ones which are unconstrained by our procedure, enter nontrivially in the aforementioned kernels, only the contribution of a single form factor, corresponding to the classical (tree-level) tensor, will be considered.
Address [Aguilar, A. C.; Cardona, J. C.; Ferreira, M. N.] Univ Campinas UNICAMP, Inst Phys Gleb Wataghin, BR-13083859 Campinas, SP, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000406540300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3232
Permanent link to this record