toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cirigliano, V.; Diaz-Calderon, D.; Falkowski, A.; Gonzalez-Alonso, M.; Rodriguez-Sanchez, A. url  doi
openurl 
  Title Semileptonic tau decays beyond the Standard Model Type Journal Article
  Year 2022 Publication (up) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 152 - 61pp  
  Keywords Semi-Leptonic Decays; Specific BSM Phenomenology  
  Abstract Hadronic tau decays are studied as probe of new physics. We determine the dependence of several inclusive and exclusive tau observables on the Wilson coefficients of the low-energy effective theory describing charged-current interactions between light quarks and leptons. The analysis includes both strange and non-strange decay channels. The main result is the likelihood function for the Wilson coefficients in the tau sector, based on the up-to-date experimental measurements and state-of-the-art theoretical techniques. The likelihood can be readily combined with inputs from other low-energy precision observables. We discuss a combination with nuclear beta, baryon, pion, and kaon decay data. In particular, we provide a comprehensive and model-independent description of the new physics hints in the combined dataset, which are known under the name of the Cabibbo anomaly.  
  Address [Cirigliano, Vincenzo] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA, Email: cirigv@uw.edu;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000788323700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5216  
Permanent link to this record
 

 
Author Coloma, P.; Esteban, I.; Gonzalez-Garcia, M.C.; Larizgoitia, L.; Monrabal, F.; Palomares-Ruiz, S. url  doi
openurl 
  Title Bounds on new physics with data of the Dresden-II reactor experiment and COHERENT Type Journal Article
  Year 2022 Publication (up) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 037 - 33pp  
  Keywords Neutrino Interactions; Non-Standard Neutrino Properties; New Light Particles  
  Abstract Coherent elastic neutrino-nucleus scattering was first experimentally established five years ago by the COHERENT experiment using neutrinos from the spallation neutron source at Oak Ridge National Laboratory. The first evidence of observation of coherent elastic neutrino-nucleus scattering with reactor antineutrinos has now been reported by the Dresden-II reactor experiment, using a germanium detector. In this paper, we present constraints on a variety of beyond the Standard Model scenarios using the new Dresden-II data. In particular, we explore the constraints imposed on neutrino nonstandard interactions, neutrino magnetic moments, and several models with light scalar or light vector mediators. We also quantify the impact of their combination with COHERENT (CsI and Ar) data. In doing so, we highlight the synergies between spallation neutron source and nuclear reactor experiments regarding beyond the Standard Model searches, as well as the advantages of combining data obtained with different nuclear targets. We also study the possible signal from beyond the Standard Model scenarios due to elastic scattering off electrons (which would pass selection cuts of the COHERENT CsI and the Dresden-II experiments) and find more stringent constraints in certain parts of the parameter space than those obtained considering coherent elastic neutrino-nucleus scattering.  
  Address [Coloma, Pilar] Univ Autonoma Madrid, Inst Fis Teor UAM CSIC, Calle Nicolas Cabrera 18-15, E-28049 Madrid, Spain, Email: pilar.coloma@ift.csic.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000791925200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5222  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanderswood, I. url  doi
openurl 
  Title Observation of the doubly charmed baryon decay Xi(++)(cc) -> Xi(c)'(+)pi(+) Type Journal Article
  Year 2022 Publication (up) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 038 - 18pp  
  Keywords Charm Physics; Flavour Physics; Hadron-Hadron Scattering; Proton-Proton Scattering  
  Abstract The Xi(++)(cc) -> Xi('+)(c)pi(+) decay is observed using proton-proton collisions collected by the LHCb experiment at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5.4 fb(-1). The Xi(++)(cc) -> Xi('+)(c)pi(+) decay is reconstructed partially, where the photon from the Xi('+)(c) -> Xi(+)(c)gamma decay is not reconstructed and the pK(-)pi(+) final state of the Sc+ baryon is employed. The Xi(++)(cc) -> Xi('+)(c)pi(+) branching fraction relative to that of the Xi(++)(cc) -> Xi('+)(c)pi(+) decay is measured to be 1.41 +/- 0.17 +/- 0.10, where the first uncertainty is statistical and the second systematic.  
  Address [Baptista de Souza Leite, J.; Bediaga, I.; Cruz Torres, M.; De Freitas Carneiro Da Graca, U.; De Miranda, J. M.; dos Reis, A. C.; Falcao, L. N.; Gomes, A.; Massafferri, A.; Torres Machado, D.] Ctr Brasileiro Pesquisas Fisicas CBPF, Rio De Janeiro, Brazil, Email: wenqian.huang@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000793847800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5226  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J. url  doi
openurl 
  Title Search for the decay B-0 -> phi mu(+) mu(-) Type Journal Article
  Year 2022 Publication (up) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 067 - 21pp  
  Keywords B Physics; Branching fraction; Hadron-Hadron Scattering; Rare Decay  
  Abstract A search for the decay B-0 -> phi mu(+) mu(-) is performed using proton-proton collisions at centre-of-mass energies of 7, 8, and 13 TeV collected by the LHCb experiment and corresponding to an integrated luminosity of 9 fb(-1). No evidence for the B-0 -> phi mu(+) mu(-) decay is found and an upper limit on the branching fraction, excluding the 0 and charmonium regions in the dimuon spectrum, of 4.4 x 10(-3) at a 90% credibility level, relative to that of the B-s(0) -> phi mu(+) mu(-) decay, is established. Using the measured B-s(0) -> phi mu(+) mu(-) branching fraction and assuming a phase-space model, the absolute branching fraction of the decay B-0 -> phi mu(+) mu(-) in the full q(2) range is determined to be less than 3.2 x 10(-9) at a 90% credibility level.  
  Address [Baptista de Souza Leite, J.; Bediaga, I.; Cruz Torres, M.; De Miranda, J. M.; dos Reis, A. C.; Falcao, L. N.; Gomes, A.; Massafferri, A.; Torres Machado, D.] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: yilong.wang@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000795499600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5228  
Permanent link to this record
 

 
Author Ramirez-Uribe, S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Vale Silva, L. url  doi
openurl 
  Title Quantum algorithm for Feynman loop integrals Type Journal Article
  Year 2022 Publication (up) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 100 - 32pp  
  Keywords Duality in Gauge Field Theories; Perturbative QCD; Scattering Amplitudes  
  Abstract We present a novel benchmark application of a quantum algorithm to Feynman loop integrals. The two on-shell states of a Feynman propagator are identified with the two states of a qubit and a quantum algorithm is used to unfold the causal singular configurations of multiloop Feynman diagrams. To identify such configurations, we exploit Grover's algorithm for querying multiple solutions over unstructured datasets, which presents a quadratic speed-up over classical algorithms when the number of solutions is much smaller than the number of possible configurations. A suitable modification is introduced to deal with topologies in which the number of causal states to be identified is nearly half of the total number of states. The output of the quantum algorithm in IBM Quantum and QUTE Testbed simulators is used to bootstrap the causal representation in the loop-tree duality of representative multiloop topologies. The algorithm may also find application and interest in graph theory to solve problems involving directed acyclic graphs.  
  Address [Ramirez-Uribe, Selomit; Renteria-Olivo, Andres E.; Rodrigo, German; Sborlini, German F. R.; Vale Silva, Luiz] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Valencia, Spain, Email: norma.selomit.ramirez@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000796990400007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5230  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva