|   | 
Details
   web
Records
Author Boucenna, M.S.; Hirsch, M.; Morisi, S.; Peinado, E.; Taoso, M.; Valle, J.W.F.
Title Phenomenology of dark matter from A_4 flavor symmetry Type Journal Article
Year 2011 Publication (down) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 037 - 20pp
Keywords Cosmology of Theories beyond the SM; Neutrino Physics; Discrete and Finite Symmetries
Abstract We investigate a model in which Dark Matter is stabilized by means of a Z(2) parity that results from the same non-abelian discrete flavor symmetry which accounts for the observed patter of neutrino mixing. In our A(4) example the standard model is extended by three extra Higgs doublets and the Z(2) parity emerges as a remnant of the spontaneous breaking of A(4) after electroweak symmetry breaking. We perform an analysis of the parameter space of the model consistent with electroweak precision tests, collider searches and perturbativity. We determine the regions compatible with the observed relic dark matter density and we present prospects for detection in direct as well as indirect Dark Matter search experiments.
Address [Boucenna, M. S.; Hirsch, M.; Morisi, S.; Peinado, E.; Taoso, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: boucenna@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000291364300037 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 674
Permanent link to this record
 

 
Author Forero, D.V.; Morisi, S.; Tortola, M.; Valle, J.W.F.
Title Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw Type Journal Article
Year 2011 Publication (down) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 142 - 18pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract Within low-scale seesaw mechanisms, such as the inverse and linear seesaw, one expects (i) potentially large lepton flavor violation (LFV) and (ii) sizeable non-standard neutrino interactions (NSI). We consider the interplay between the magnitude of non-unitarity effects in the lepton mixing matrix, and the constraints that follow from LFV searches in the laboratory. We find that NSI parameters can be sizeable, up to percent level in some cases, while LFV rates, such as that for μ-> e gamma, lie within current limits, including the recent one set by the MEG collaboration. As a result the upcoming long baseline neutrino experiments offer a window of opportunity for complementary LFV and weak universality tests.
Address [Forero, DV; Morisi, S; Tortola, M; Valle, JWF] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp,Edificio Inst Paterna, E-46071 Valencia, Spain, Email: dvanegas@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000296086700001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 817
Permanent link to this record
 

 
Author Bazzocchi, F.; Morisi, S.; Peinado, E.; Valle, J.W.F.; Vicente, A.
Title Bilinear R-parity violation with flavor symmetry Type Journal Article
Year 2013 Publication (down) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 033 - 16pp
Keywords Beyond Standard Model; Neutrino Physics; Supersymmetric Standard Model; Discrete and Finite Symmetries
Abstract Bilinear R-parity violation (BRPV) provides the simplest intrinsically supersymmetric neutrino mass generation scheme. While neutrino mixing parameters can be probed in high energy accelerators, they are unfortunately not predicted by the theory. Here we propose a model based on the discrete flavor symmetry Lambda(4) with a single R-parity violating parameter, leading to (i) correct Cabbibo mixing given by the Gatto-Sartori-Tonin formula, and a successful unification-like b-tau mass relation, and (ii) a correlation between the lepton mixing angles theta(13) and theta(23) in agreement with recent neutrino oscillation data, as well as a (nearly) massless neutrino, leading to absence of neutrinoless double beta decay.
Address [Bazzocchi, F.] Int Sch Adv Studies SISSA, Trieste, Italy, Email: fbazzo@sissa.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000315583200033 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1367
Permanent link to this record
 

 
Author Lavoura, L.; Morisi, S.; Valle, J.W.F.
Title Accidental stability of dark matter Type Journal Article
Year 2013 Publication (down) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 118 - 17pp
Keywords Beyond Standard Model; Neutrino Physics; Discrete and Finite Symmetries
Abstract We propose that dark matter is stable as a consequence of an accidental Z(2) that results from a flavour symmetry group which is the double-cover group of the symmetry group of one of the regular geometric solids. Although model-dependent, the phenomenology resembles that of a generic “inert Higgs” dark matter scheme.
Address [Lavoura, L.] Univ Tecn Lisboa, CFTP, Inst Super Tecn, P-1049001 Lisbon, Portugal, Email: balio@cftp.ist.utl.pt;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000316273700041 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1383
Permanent link to this record
 

 
Author Hirsch, M.; Lineros, R.A.; Morisi, S.; Palacio, J.; Rojas, N.; Valle, J.W.F.
Title WIMP dark matter as radiative neutrino mass messenger Type Journal Article
Year 2013 Publication (down) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 149 - 18pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; Neutrino Physics
Abstract The minimal seesaw extension of the Standard SU(3)(c)circle times SU(2)(L)circle times U(1)(Y) Model requires two electroweak singlet fermions in order to accommodate the neutrino oscillation parameters at tree level. Here we consider a next to minimal extension where light neutrino masses are generated radiatively by two electroweak fermions: one singlet and one triplet under SU(2)(L). These should be odd under a parity symmetry and their mixing gives rise to a stable weakly interactive massive particle (WIMP) dark matter candidate. For mass in the GeV-TeV range, it reproduces the correct relic density, and provides an observable signal in nuclear recoil direct detection experiments. The fermion triplet component of the dark matter has gauge interactions, making it also detectable at present and near future collider experiments.
Address [Hirsch, M.; Lineros, R. A.; Palacio, J.; Valle, J. W. F.] Univ Valencia, Edificio Inst Paterna, CSIC, Inst Fis Corpuscular,AHEP Grp, E-46071 Valencia, Spain, Email: mahirsch@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000326047200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1623
Permanent link to this record