toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Delhom, A.; Olmo, G.J.; Singh, P. url  doi
openurl 
  Title A diffeomorphism invariant family of metric-affine actions for loop cosmologies Type Journal Article
  Year 2023 Publication (up) Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 059 - 21pp  
  Keywords quantum cosmology; modified gravity; cosmic singularity  
  Abstract In loop quantum cosmology (LQC) the big bang singularity is generically resolved by a big bounce. This feature holds even when modified quantization prescriptions of the Hamiltonian constraint are used such as in mLQC-I and mLQC-II. While the later describes an effective description qualitatively similar to that of standard LQC, the former describes an asymmetric evolution with an emergent Planckian de-Sitter pre-bounce phase even in the absence of a potential. We consider the potential relation of these canonically quantized non-singular models with effective actions based on a geometric description. We find a 3-parameter family of metric-affine f (R) theories which accurately approximate the effective dynamics of LQC and mLQC-II in all regimes and mLQC-I in the post-bounce phase. Two of the parameters are fixed by enforcing equivalence at the bounce, and the background evolution of the relevant observables can be fitted with only one free parameter. It is seen that the non-perturbative effects of these loop cosmologies are universally encoded by a logarithmic correction that only depends on the bounce curvature of the model. In addition, we find that the best fit value of the free parameter can be very approximately written in terms of fundamental parameters of the underlying quantum description for the three models. The values of the best fits can be written in terms of the bounce density in a simple manner, and the values for each model are related to one another by a proportionality relation involving only the Barbero-Immirzi parameter.  
  Address [Delhom, Adria; Singh, Parampreet] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: adria.delhom@gmail.com;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001025410500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5583  
Permanent link to this record
 

 
Author Delhom, A.; Olmo, G.J.; Orazi, E. url  doi
openurl 
  Title Ricci-Based Gravity theories and their impact on Maxwell and nonlinear electromagnetic models Type Journal Article
  Year 2019 Publication (up) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 149 - 24pp  
  Keywords Classical Theories of Gravity; Beyond Standard Model  
  Abstract We extend the correspondence between metric-affine Ricci-Based Gravity the- ories and General Relativity (GR) to the case in which the matter sector is represented by linear and nonlinear electromagnetic fields. This complements previous studies focused on fluids and scalar fields. We establish the general algorithm that relates the matter fields in the GR and RBG frames and consider some applications. In particular, we find that the so-called Eddington-inspired Born-Infeld gravity theory coupled to Maxwell electromag- netism is in direct correspondence with GR coupled to Born-Infeld electromagnetism. We comment on the potential phenomenological implications of this relation.  
  Address [Delhom, Adria; Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: adria.delhom@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000513489000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4281  
Permanent link to this record
 

 
Author Delhom, A.; Macedo, C.F.B.; Olmo, G.J.; Crispino, L.C.B. url  doi
openurl 
  Title Absorption by black hole remnants in metric-affine gravity Type Journal Article
  Year 2019 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 2 Pages 024016 - 12pp  
  Keywords  
  Abstract Using numerical methods, we investigate the absorption properties of a family of nonsingular solutions which arise in different metric-affine theories, such as quadratic and Born-Infeld gravity. These solutions continuously interpolate between Schwarzschild black holes and naked solitons with wormhole topology. The resulting spectrum is characterized by a series of quasibound states excitations, associated with the existence of a stable photonsphere.  
  Address [Delhom, Adria; Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, Ctr Mixto Univ Valencia CSIC, E-46100 Valencia, Spain, Email: adna.delhom@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000474874900007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4075  
Permanent link to this record
 

 
Author Bejarano, C.; Delhom, A.; Jimenez-Cano, A.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Geometric inequivalence of metric and Palatini formulations of General Relativity Type Journal Article
  Year 2020 Publication (up) Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 802 Issue Pages 135275 - 4pp  
  Keywords  
  Abstract Projective invariance is a symmetry of the Palatini version of General Relativity which is not present in the metric formulation. The fact that the Riemann tensor changes nontrivially under projective transformations implies that, unlike in the usual metric approach, in the Palatini formulation this tensor is subject to a gauge freedom, which allows some ambiguities even in its scalar contractions. In this sense, we show that for the Schwarzschild solution there exists a projective gauge in which the (affine) Kretschmann scalar, K (R beta μnu R alpha beta μnu)-R-alpha, can be set to vanish everywhere. This puts forward that the divergence of curvature scalars may, in some cases, be avoided by a gauge transformation of the connection.  
  Address [Bejarano, Cecilia] UBA, CONICET, IAFE, Casilla Correo 67,Sucursal 28, RA-1428 Buenos Aires, DF, Argentina, Email: cbejarano@iafe.uba.ar;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000515091400031 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4348  
Permanent link to this record
 

 
Author Beltran Jimenez, J.; Delhom, A.; Olmo, G.J.; Orazi, E. url  doi
openurl 
  Title Born-Infeld gravity: Constraints from light-by-light scattering and an effective field theory perspective Type Journal Article
  Year 2021 Publication (up) Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 820 Issue Pages 136479 - 6pp  
  Keywords  
  Abstract By using a novel technique that establishes a correspondence between general relativity and metric-affine theories based on the Ricci tensor, we are able to set stringent constraints on the free parameter of Born-Infeld gravity from the ones recently obtained for Born-Infeld electrodynamics by using light-by light scattering data from ATLAS. We also discuss how these gravity theories plus matter fit within an effective field theory framework.  
  Address [Beltran Jimenez, Jose] Univ Salamanca, Dept Fis Fundamental, E-37008 Salamanca, Spain, Email: jose.beltran@usal.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000701707400005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4978  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva