toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gololo, M.G.D.; Carrio Argos, F.; Mellado, B. url  doi
openurl 
  Title Tile Computer-on-Module for the ATLAS Tile Calorimeter Phase-II upgrades Type Journal Article
  Year 2022 Publication (up) Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 17 Issue 6 Pages P06020 - 14pp  
  Keywords Control and monitor systems online; Detector control systems (detector and experiment monitoring and slow-control systems, architecture, hardware, algorithms, databases); Data acquisition circuits; Digital electronic circuits  
  Abstract The Tile PreProcessor (TilePPr) is the core element of the Tile Calorimeter (TileCal) off-detector electronics for High-luminosity Large Hadron Collider (HL-LHC). The TilePPr comprises FPGA-based boards to operate and read out the TileCal on-detector electronics. The Tile Computer on Module (TileCoM) mezzanine is embedded within TilePPr to carry out three main functionalities. These include remote configuration of on-detector electronics and TilePPr FPGAs, interface the TilePPr with the ATLAS Trigger and Data Acquisition (TDAQ) system, and interfacing the TilePPr with the ATLAS Detector Control System (DCS) by providing monitoring data. The TileCoM is a 10-layer board with a Zynq UltraScale+ ZU2CG for processing data, interface components to integrate with TilePPr and the power supply to be connected to the Advanced Telecommunication Computing Architecture carrier. A CentOS embedded Linux is deployed on the TileCoM to implement the required functionalities for the HL-LHC. In this paper we present the hardware and firmware developments of the TileCoM system in terms of remote programming, interface with ATLAS TDAQ system and DCS system.  
  Address [Gololo, M. G. D.; Argos, F. Carrio; Mellado, B.] Univ Witwatersrand, Inst Collider Particle Phys, 1 Jan Smuts Ave, ZA-2000 Johannesburg, South Africa, Email: mpho.gift.doctor.gololo@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000836448900004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5335  
Permanent link to this record
 

 
Author ATLAS Collaboration (Aad, G. et al); Akiot, A.; Amos, K.R.; Aparisi Pozo, J.A.; Bailey, A.J.; Bouchhar, N.; Cabrera Urban, S.; Cantero, J.; Cardillo, F.; Castillo Gimenez, V.; Chitishvili, M.; Costa, M.J.; Didenko,, M.; Escobar, C.; Fiorini, L.; Fullana Torregrosa, E.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gomez Delegido, A.J.; Gonzalez de la Hoz, S.; Gonzalvo Rodriguez, G.R.; Guerrero Rojas, J.G.R.; Lacasta, C.; Marti-Garcia, S.; Martinez Agullo, P.; Miralles Lopez, M.; Mitsou, V.A.; Monsonis Romero, L.; Moreno Llacer, M.; Munoz Perez, D.; Navarro-Gonzalez, J.; Poveda, J.; Prades Ibañez, A.; Rubio Jimenez, A.; Ruiz-Martinez, A.; Sabatini, P.; Salt, J.; Sanchez Sebastian, V.; Sayago Galvan, I.; Senthilkumar, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valiente Moreno, E.; Valls Ferrer, J.A.; Varriale, L.; Villaplana Perez, M.; Vos, M. url  doi
openurl 
  Title Fast b-tagging at the high-level trigger of the ATLAS experiment in LHC Run 3 Type Journal Article
  Year 2023 Publication (up) Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue 11 Pages P11006 - 38pp  
  Keywords Trigger algorithms; Trigger concepts and systems (hardware and software)  
  Abstract The ATLAS experiment relies on real-time hadronic jet reconstruction and b-tagging to record fully hadronic events containing b-jets. These algorithms require track reconstruction, which is computationally expensive and could overwhelm the high-level-trigger farm, even at the reduced event rate that passes the ATLAS first stage hardware-based trigger. In LHC Run 3, ATLAS has mitigated these computational demands by introducing a fast neural-network-based b-tagger, which acts as a low-precision filter using input from hadronic jets and tracks. It runs after a hardware trigger and before the remaining high-level-trigger reconstruction. This design relies on the negligible cost of neural-network inference as compared to track reconstruction, and the cost reduction from limiting tracking to specific regions of the detector. In the case of Standard Model HH -> b (b) over barb (b) over bar, a key signature relying on b-jet triggers, the filter lowers the input rate to the remaining high-level trigger by a factor of five at the small cost of reducing the overall signal efficiency by roughly 2%.  
  Address [Filmer, E. K.; Grant, C. M.; Jackson, P.; Kong, A. X. Y.; Pandya, H. D.; Potti, H.; Ruggeri, T. A.; Ting, E. X. L.; White, M. J.] Univ Adelaide, Dept Phys, Adelaide, SA, Australia  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001123791900004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5972  
Permanent link to this record
 

 
Author Peppa, V.; Thomson, R.M.; Enger, S.A.; Fonseca, G.P.; Lee, C.N.; Lucero, J.N.E.; Mourtada, F.; Siebert, F.A.; Vijande, J.; Papagiannis, P. doi  openurl
  Title A MC-based anthropomorphic test case for commissioning model-based dose calculation in interstitial breast 192-Ir HDR brachytherapy Type Journal Article
  Year 2023 Publication (up) Medical Physics Abbreviated Journal Med. Phys.  
  Volume 50 Issue 7 Pages 4675-4687  
  Keywords anthropomorphic phantom; commissioning; HDR brachytherapy; model based dose calculation algorithms; Monte Carlo  
  Abstract PurposeTo provide the first clinical test case for commissioning of Ir-192 brachytherapy model-based dose calculation algorithms (MBDCAs) according to the AAPM TG-186 report workflow. Acquisition and Validation MethodsA computational patient phantom model was generated from a clinical multi-catheter Ir-192 HDR breast brachytherapy case. Regions of interest (ROIs) were contoured and digitized on the patient CT images and the model was written to a series of DICOM CT images using MATLAB. The model was imported into two commercial treatment planning systems (TPSs) currently incorporating an MBDCA. Identical treatment plans were prepared using a generic Ir-192 HDR source and the TG-43-based algorithm of each TPS. This was followed by dose to medium in medium calculations using the MBDCA option of each TPS. Monte Carlo (MC) simulation was performed in the model using three different codes and information parsed from the treatment plan exported in DICOM radiation therapy (RT) format. Results were found to agree within statistical uncertainty and the dataset with the lowest uncertainty was assigned as the reference MC dose distribution. Data Format and Usage NotesThe dataset is available online at ,. Files include the treatment plan for each TPS in DICOM RT format, reference MC dose data in RT Dose format, as well as a guide for database users and all files necessary to repeat the MC simulations. Potential ApplicationsThe dataset facilitates the commissioning of brachytherapy MBDCAs using TPS embedded tools and establishes a methodology for the development of future clinical test cases. It is also useful to non-MBDCA adopters for intercomparing MBDCAs and exploring their benefits and limitations, as well as to brachytherapy researchers in need of a dosimetric and/or a DICOM RT information parsing benchmark. Limitations include specificity in terms of radionuclide, source model, clinical scenario, and MBDCA version used for its preparation.  
  Address [Peppa, Vasiliki; Papagiannis, Panagiotis] Natl & Kapodistrian Univ Athens, Med Sch, Med Phys Lab, Athens, Greece, Email: ppapagi@med.uoa.gr  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0094-2405 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000989616100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5529  
Permanent link to this record
 

 
Author AGATA Collaboration (Akkoyun, S. et al); Algora, A.; Barrientos, D.; Domingo-Pardo, C.; Egea, F.J.; Gadea, A.; Huyuk, T.; Kaci, M.; Mendez, V.; Rubio, B.; Salt, J.; Tain, J.L. url  doi
openurl 
  Title AGATA-Advanced GAmma Tracking Array Type Journal Article
  Year 2012 Publication (up) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 668 Issue Pages 26-58  
  Keywords AGATA; gamma-Ray spectroscopy; gamma-Ray tracking; HPGe detectors; Digital signal processing; Pulse-shape and gamma-ray tracking algorithms; Semiconductor detector performance and simulations  
  Abstract The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of gamma-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterisation of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximise its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer.  
  Address [Boston, A. J.; Boston, H. C.; Colosimo, S.; Cooper, R. J.; Cresswell, J. R.; Dimmock, M. R.; Filmer, F.; Grint, A. N.; Harkness, L. J.; Judson, D. S.; Mather, A. R.; Moon, S.; Nelson, L.; Nolan, P. J.; Norman, M.; Oxley, D. C.; Rigby, S.; Sampson, J.; Scraggs, D. P.; Seddon, D.; Slee, M.; Stanios, T.; Thornhill, J.; Unsworth, C.; Wells, D.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England, Email: a.j.boston@liverpool.ac.uk  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000300864200005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 923  
Permanent link to this record
 

 
Author AGATA Collaboration (Crespi, F.C.L. et al); Gadea, A. url  doi
openurl 
  Title Response of AGATA segmented HPGe detectors to gamma rays up to 15.1 MeV Type Journal Article
  Year 2013 Publication (up) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 705 Issue Pages 47-54  
  Keywords AGATA; Gamma-ray spectroscopy; Gamma-ray tracking; HPGe detectors; Pulse-shape and gamma-ray tracking algorithms; Semiconductor detector performance and simulations  
  Abstract The response of AGATA segmented HPGe detectors to gamma rays in the energy range 2-15 MeV was measured. The 15.1 MeV gamma rays were produced using the reaction d(B-11,n gamma)C-12 at E-beam=19.1 MeV, while gamma rays between 2 and 9 MeV were produced using an Am-Be-Fe radioactive source. The energy resolution and linearity were studied and the energy-to-pulse-height conversion resulted to be linear within 0.05%.Experimental interaction multiplicity distributions are discussed and compared with the results of Geant4 simulations. It is shown that the application of gamma-ray tracking allows a suppression of background radiation caused by n-capture in Ge nuclei. Finally the Doppler correction for the 15.1 MeV gamma line, performed using the position information extracted with Pulse-shape analysis is discussed.  
  Address [Crespi, F. C. L.; Avigo, R.; Camera, F.; Bottoni, S.; Bracco, A.; Ceruti, S.; Giaz, A.; Leoni, S.; Nicolini, R.; Pellegri, L.; Riboldi, S.; Vandone, V.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy, Email: fabio.crespi@mi.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000314826000009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1329  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva