|   | 
Details
   web
Records
Author Hidalgo-Duque, C.; Nieves, J.; Pavon Valderrama, M.
Title Light flavor and heavy quark spin symmetry in heavy meson molecules Type Journal Article
Year 2013 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 87 Issue 7 Pages 076006 - 14pp
Keywords
Abstract We propose an effective field theory incorporating light SU(3)-flavor and heavy quark spin symmetry to describe charmed meson-antimeson bound states. At lowest order the effective field theory entails a remarkable simplification: it only involves contact range interactions among the heavy meson and antimeson fields. We show that the isospin violating decays of the X(3872) can be used to constrain the interaction between the D and a (D) over bar* mesons in the isovector channel. As a consequence, we can rule out the existence of an isovector partner of the X(3872). If we additionally assume that the X(3915) and Y(4140) are D*(D) over bar* and D*(s)(D) over bar*(s) molecular states, we can determine the full spectrum of molecular states with isospin I = 0, 1/2 and 1.
Address Univ Valencia, Inst Fis Corpuscular IFIC, Ctr Mixto CSIC, Inst Invest Paterna, E-46071 Valencia, Spain, Email: pavonvalderrama@ipno.in2p3.fr
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000317197800010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1395
Permanent link to this record
 

 
Author Guo, F.K.; Hidalgo-Duque, C.; Nieves, J.; Pavon Valderrama, M.
Title Consequences of heavy-quark symmetries for hadronic molecules Type Journal Article
Year 2013 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 88 Issue 5 Pages 054007 - 5pp
Keywords
Abstract Among the newly observed structures in the heavy-quarkonium mass region, some have been proposed to be hadronic molecules. We investigate the consequences of heavy- quark flavor symmetry on these heavy meson hadronic molecules. The symmetry allows us to predict new hadronic molecules on one hand, and test the hadronic molecular assumption of the observed structures on the other hand. We explore the consequences of the flavor symmetry assuming the X(3872) and Z(b)(10 610) as an isoscalar D (D) over bar* and isovector B (B) over bar* hadronic molecule, respectively. A series of hadronic molecules composed of heavy mesons are predicted. In particular, there is an isoscalar 1(++) B (B) over bar* bound state with a mass about 10 580 MeV which may be searched for in the Y(1S, 2S)pi(+) pi(-) pi(0) mass distribution; the isovector charmonium partners of the Z(b)(10 610) and the Z(b)(10 650) are also predicted, which probably corresponds to the very recently observed Z(c)(3900) and Z(c)(4025) resonances by the BESIII Collaboration.
Address [Guo, Feng-Kun] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: fkguo@hiskp.uni-bonn.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000324053300003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1573
Permanent link to this record
 

 
Author Guo, F.K.; Hidalgo-Duque, C.; Nieves, J.; Pavon Valderrama, M.
Title Heavy-antiquark-diquark symmetry and heavy hadron molecules: Are there triply heavy pentaquarks? Type Journal Article
Year 2013 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 88 Issue 5 Pages 054014 - 6pp
Keywords
Abstract We explore the consequences of heavy flavor, heavy quark spin, and heavy antiquark-diquark symmetries for hadronic molecules within an effective field theory framework. Owing to heavy antiquark-diquark symmetry, the doubly heavy baryons have approximately the same light-quark structure as the heavy antimesons. As a consequence, the existence of a heavy meson-antimeson molecule implies the possibility of a partner composed of a heavy meson and a doubly heavy baryon. In this regard, the D (D) over bar* molecular nature of the X(3872) will hint at the existence of several baryonic partners with isospin I = 0 and J(P) = 5(-)/2 or 3(-)/2. Moreover, if the Z(b)(10650) turns out to be a B*(B) over bar* bound state, we can be confident of the existence of Xi(bb)*(B) over bar* hadronic molecules with quantum numbers I(J(P)) = 1(1(-)/2) and I(J(P)) = 1(3/2(-)). These states are of special interest since they can be considered to be triply heavy pentaquarks.
Address [Guo, Feng-Kun] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: fkguo@hiskp.uni-bonn.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000324232700010 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1580
Permanent link to this record
 

 
Author Yang, Z.; Cao, X.; Guo, F.K.; Nieves, J.; Pavon Valderrama, M.
Title Strange molecular partners of the Z(c)(3900) and Z(c)(4020) Type Journal Article
Year 2021 Publication (up) Physical Review D Abbreviated Journal Phys. Rev. D
Volume 103 Issue 7 Pages 074029 - 8pp
Keywords
Abstract Quantum chromodynamics presents a series of exact and approximate symmetries which can be exploited to predict new hadrons from previously known ones. The Z(c)(3900) and Z(c)(4020), which have been theorized to be isovector D*(D) over bar and D*(D) over bar* molecules [I-G(J(PC)) = 1(-)(1)(+-))], are no exception. Here we argue that from SU(3)-flavor symmetry, we should expect the existence of strange partners of the Z(c)'s with hadronic molecular configurations D*(D) over bar (s) – D (D) over bar*(s) and D*(D) over bar*(s) (or, equivalently, quark content c (c) over bars (q) over bar, with q = u, d). The quantum numbers of these Z(cs) and Z(cs)* structures would be I(J(P)) = 1/2 (1(+)). The predicted masses of these partners depend on the details of the theoretical scheme used, but they should be around the D*(D) over bar (s) – D (D) over bar*(s) and D*(D) over bar*(s) thresholds, respectively. Moreover, any of these states could be either a virtual pole or a resonance. We show that, together with a possible triangle singularity contribution, such a picture nicely agrees with the very recent BESIII data of the e(+)e(-) -> K+((Ds-D*0) + D*D--(s)0).
Address [Yang, Zhi] Univ Elect Sci & Technol China, Sch Phys, Chengdu 610054, Peoples R China, Email: zhiyang@uestc.edu.cn;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000648581900002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4832
Permanent link to this record