toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Balbinot, R.; Fabbri, A. url  doi
openurl 
  Title The Unruh Vacuum and the “In-Vacuum” in Reissner-Nordström Spacetime Type Journal Article
  Year 2024 Publication (down) Universe Abbreviated Journal Universe  
  Volume 10 Issue 1 Pages 18 - 14pp  
  Keywords Hawking radiation; Unruh vacuum; Reissner-Nordstrom black holes  
  Abstract The Unruh vacuum is widely used as a quantum state to describe black hole evaporation since, near the horizon, it reproduces the physical state of a quantum field, the so-called “in-vacuum”, in the case where a black hole is formed by gravitational collapse. We examine the relation between these two quantum states in the background spacetime of a Reissner-Nordstrom black hole (both extremal and not), highlighting the similarities and striking differences.  
  Address [Balbinot, Roberto] Univ Bologna, Dipartimento Fis, Via Irnerio 46, I-40126 Bologna, Italy, Email: roberto.balbinot@unibo.it;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001151025300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5914  
Permanent link to this record
 

 
Author Maluf, R.V.; Mora-Perez, G.; Olmo, G.J.; Rubiera-Garcia, D. url  doi
openurl 
  Title Nonsingular, Lump-like, Scalar Compact Objects in (2+1)-Dimensional Einstein Gravity Type Journal Article
  Year 2024 Publication (down) Universe Abbreviated Journal Universe  
  Volume 10 Issue 6 Pages 258 - 13pp  
  Keywords Einstein gravity; compact objects; nonlinear scalar field  
  Abstract We study the space-time geometry generated by coupling a free scalar field with a noncanonical kinetic term to general relativity in (2+1) dimensions. After identifying a family of scalar Lagrangians that yield exact analytical solutions in static and circularly symmetric scenarios, we classify the various types of solutions and focus on a branch that yields asymptotically flat geometries. We show that the solutions within such a branch can be divided in two types, namely naked singularities and nonsingular objects without a center. In the latter, the energy density is localized around a maximum and vanishes only at infinity and at an inner boundary. This boundary has vanishing curvatures and cannot be reached by any time-like or null geodesic in finite affine time. This allows us to consistently interpret such solutions as nonsingular, lump-like, static compact scalar objects whose eventual extension to the (3+1)-dimensional context could provide structures of astrophysical interest.  
  Address [Maluf, Roberto V.; Olmo, Gonzalo J.] Univ Fed Ceara UFC, Dept Fis, Campus Pici, BR-60455760 Fortaleza, Ceara, Brazil, Email: r.v.maluf@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001256495600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6169  
Permanent link to this record
 

 
Author Martin-Luna, P.; Esperante, D.; Prieto, A.F.; Fuster-Martinez, N.; Rivas, I.G.; Gimeno, B.; Ginestar, D.; Gonzalez-Iglesias, D.; Hueso, J.L.; Llosa, G.; Martinez-Reviriego, P.; Meneses-Felipe, A.; Riera, J.; Regueiro, P.V.; Hueso-Gonzalez, F. doi  openurl
  Title Simulation of electron transport and secondary emission in a photomultiplier tube and validation Type Journal Article
  Year 2024 Publication (down) Sensors and Actuators A-Physical Abbreviated Journal Sens. Actuator A-Phys.  
  Volume 365 Issue Pages 114859 - 10pp  
  Keywords Photomultiplier tube; Photodetector; Proton therapy; Monte Carlo simulation; Measurement  
  Abstract The electron amplification and transport within a photomultiplier tube (PMT) has been investigated by developing an in-house Monte Carlo simulation code. The secondary electron emission in the dynodes is implemented via an effective electron model and the Modified Vaughan's model, whereas the transport is computed with the Boris leapfrog algorithm. The PMT gain, rise time and transit time have been studied as a function of supply voltage and external magnetostatic field. A good agreement with experimental measurements using a Hamamatsu R13408-100 PMT was obtained. The simulations have been conducted following different treatments of the underlying geometry: three-dimensional, two-dimensional and intermediate (2.5D). The validity of these approaches is compared. The developed framework will help in understanding the behavior of PMTs under highly intense and irregular illumination or varying external magnetic fields, as in the case of prompt gamma-ray measurements during pencil-beam proton therapy; and aid in optimizing the design of voltage dividers with behavioral circuit models.  
  Address [Martin-Luna, Pablo; Esperante, Daniel; Fuster-Martinez, Nuria; Gimeno, Benito; Gonzalez-Iglesias, Daniel; Llosa, Gabriela; Martinez-Reviriego, Pablo; Meneses-Felipe, Alba; Hueso-Gonzalez, Fernando] CSIC UV, Inst Fis Corpuscular IFIC, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: pablo.martin@uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-4247 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001131902700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5876  
Permanent link to this record
 

 
Author Real, D.; Calvo, D.; Zornoza, J.D.; Manzaneda, M.; Gozzini, R.; Ricolfe-Viala, C.; Lajara, R.; Albiol, F. doi  openurl
  Title Fast Coincidence Filter for Silicon Photomultiplier Dark Count Rate Rejection Type Journal Article
  Year 2024 Publication (down) Sensors Abbreviated Journal Sensors  
  Volume 24 Issue 7 Pages 2084 - 12pp  
  Keywords time-to-digital converters; neutrino telescopes; silicon photomultipliers; dark noise rate filtering  
  Abstract Silicon Photomultipliers find applications across various fields. One potential Silicon Photomultiplier application domain is neutrino telescopes, where they may enhance the angular resolution. However, the elevated dark count rate associated with Silicon Photomultipliers represents a significant challenge to their widespread utilization. To address this issue, it is proposed to use Silicon Photomultipliers and Photomultiplier Tubes together. The Photomultiplier Tube signals serve as a trigger to mitigate the dark count rate, thereby preventing undue saturation of the available bandwidth. This paper presents an investigation into a fast and resource-efficient method for filtering the Silicon Photomultiplier dark count rate. A low-resource and fast coincident filter has been developed, which removes the Silicon Photomultiplier dark count rate by using as a trigger the Photomultiplier Tube input signals. The architecture of the coincidence filter, together with the first results obtained, which validate the effectiveness of this method, is presented.  
  Address [Real, Diego; Calvo, David; Zornoza, Juan de Dios; Manzaneda, Mario; Gozzini, Rebecca; Albiol, Francisco] CSIC Univ Valencia, IFIC Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: real@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001201226600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6063  
Permanent link to this record
 

 
Author Penas, J.; Alejo, A.; Bembibre, A.; Apiñaniz, J.I.; Garcia-Garcia, E.; Guerrero, C.; Henares, J.L.; Hernandez-Palmero, I.; Mendez, C.; Millan-Callado, M.A.; Puyuelo-Valdes, P.; Seimetz, M.; Benlliure, J. doi  openurl
  Title Production of carbon-11 for PET preclinical imaging using a high-repetition rate laser-driven proton source Type Journal Article
  Year 2024 Publication (down) Scientific Reports Abbreviated Journal Sci Rep  
  Volume 14 Issue 1 Pages 11448 - 12pp  
  Keywords  
  Abstract Most advanced medical imaging techniques, such as positron-emission tomography (PET), require tracers that are produced in conventional particle accelerators. This paper focuses on the evaluation of a potential alternative technology based on laser-driven ion acceleration for the production of radioisotopes for PET imaging. We report for the first time the use of a high-repetition rate, ultra-intense laser system for the production of carbon-11 in multi-shot operation. Proton bunches with energies up to 10-14 MeV were systematically accelerated in long series at pulse rates between 0.1 and 1 Hz using a PW-class laser. These protons were used to activate a boron target via the 11 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{11}$$\end{document} B(p,n) 11 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{11}$$\end{document} C nuclear reaction. A peak activity of 234 kBq was obtained in multi-shot operation with laser pulses with an energy of 25 J. Significant carbon-11 production was also achieved for lower pulse energies. The experimental carbon-11 activities measured in this work are comparable to the levels required for preclinical PET, which would be feasible by operating at the repetition rate of current state-of-the-art technology (10 Hz). The scalability of next-generation laser-driven accelerators in terms of this parameter for sustained operation over time could increase these overall levels into the clinical PET range.  
  Address [Penas, Juan; Alejo, Aaron; Bembibre, Adrian; Benlliure, Jose] Univ Santiago de Compostela, Inst Galego Fis Altas Enerxias IGFAE, Santiago De Compostela 15782, Spain, Email: j.benlliure@usc.es  
  Corporate Author Thesis  
  Publisher Nature Portfolio Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001228252900017 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6143  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva