toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Centelles Chulia, S.; Cepedello, R.; Peinado, E.; Srivastava, R. url  doi
openurl 
  Title Scotogenic dark symmetry as a residual subgroup of Standard Model symmetries Type Journal Article
  Year 2020 Publication (up) Chinese Physics C Abbreviated Journal Chin. Phys. C  
  Volume 44 Issue 8 Pages 083110 - 7pp  
  Keywords neutrino masses; dark matter; symmetries; scotogenic  
  Abstract We demonstrate that a scotogenic dark symmetry can be obtained as a residual subgroup of the global U(1)(B-L) symmetry already present in the Standard Model. In addition, we propose a general framework in which the U(1)(B-L) symmetry is spontaneously broken into an even Z(2n) subgroup, setting the general conditions for neutrinos to be Majorana and for dark matter stability to exist in terms of the residual Z(2n). As an example, under this general framework, we build a class of simple models where, in a scotogenic manner, the dark matter candidate is the lightest particle running inside the mass loop of a neutrino. The global U(1)(B-L) symmetry in our framework, being anomaly free, can also be gauged in a straightforward manner leading to a richer phenomenology.  
  Address [Chulia, Salvador Centelles; Cepedello, Ricardo; Srivastava, Rahul] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna C Catedratico Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: salcen@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-1137 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000557423400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4494  
Permanent link to this record
 

 
Author Abbas, G.; Abyaneh, M.Z.; Biswas, A.; Gupta, S.; Patra, M.; Rajasekaran, G.; Srivastava, R. url  doi
openurl 
  Title High scale mixing relations as a natural explanation for large neutrino mixing Type Journal Article
  Year 2016 Publication (up) International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 31 Issue 17 Pages 1650095 - 47pp  
  Keywords  
  Abstract The origin of small mixing among the quarks and a large mixing among the neutrinos has been an open question in particle physics. In order to answer this question, we postulate general relations among the quarks and the leptonic mixing angles at a high scale, which could be the scale of Grand Unified Theories. The central idea of these relations is that the quark and the leptonic mixing angles can be unified at some high scale either due to some quark lepton symmetry or some other underlying mechanism and as a consequence, the mixing angles of the leptonic sector are proportional to that of the quark sector. We investigate the phenomenology of the possible relations where the leptonic mixing angles are proportional to the quark mixing angles at the unification scale by taking into account the latest experimental constraints from the neutrino sector. These relations are able to explain the pattern of leptonic mixing at the low scale and thereby hint that these relations could be possible signatures of a quark lepton symmetry or some other underlying quark lepton mixing unification mechanism at some high scale linked to Grand Unified Theories.  
  Address [Abbas, Gauhar; Abyaneh, Mehran Zahiri] Univ Valencia, CSIC, IFIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: Gauhar.Abbas@ific.uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000379878600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2764  
Permanent link to this record
 

 
Author De Romeri, V.; Majumdar, A.; Papoulias, D.K.; Srivastava, R. url  doi
openurl 
  Title XENONnT and LUX-ZEPLIN constraints on DSNB-boosted dark matter Type Journal Article
  Year 2024 Publication (up) Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 028 - 34pp  
  Keywords dark matter detectors; dark matter simulations; supernova neutrinos; supernovas  
  Abstract We consider a scenario in which dark matter particles are accelerated to semirelativistic velocities through their scattering with the Diffuse Supernova Neutrino Background. Such a subdominant, but more energetic dark matter component can be then detected via its scattering on the electrons and nucleons inside direct detection experiments. This opens up the possibility to probe the sub -GeV mass range, a region of parameter space that is usually not accessible at such facilities. We analyze current data from the XENONnT and LUX-ZEPLIN experiments and we obtain novel constraints on the scattering cross sections of sub -GeV boosted dark matter with both nucleons and electrons. We also highlight the importance of carefully taking into account Earth's attenuation effects as well as the finite nuclear size into the analysis. By comparing our results to other existing constraints, we show that these effects lead to improved and more robust constraints.  
  Address [Romeri, Valentina De] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient UV C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: deromeri@ific.uv.es;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001195757300010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6043  
Permanent link to this record
 

 
Author Chen, P.; Centelles Chulia, S.; Ding, G.J.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Neutrino predictions from generalized CP symmetries of charged leptons Type Journal Article
  Year 2018 Publication (up) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 077 - 26pp  
  Keywords Neutrino Physics; CP violation  
  Abstract We study the implications of generalized CP transformations acting on the mass matrices of charged leptons in a model-independent way. Generalized e – mu, e – tau and μ- tau symmetries are considered in detail. In all cases the physical parameters of the lepton mixing matrix, three mixing angles and three CP phases can be expressed in terms of a restricted set of independent “theory parameters” that characterize a given choice of CP transformation. This leads to implications for neutrino oscillations as well as neutrinoless double beta decay experiments.  
  Address [Chen, Peng] Ocean Univ China, Coll Informat Sci & Engn, Qingdao 266100, Peoples R China, Email: pche@mail.ustc.edu.cn;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000438620700007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3659  
Permanent link to this record
 

 
Author Chen, P.; Centelles Chulia, S.; Ding, G.J.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title CP symmetries as guiding posts: revamping tri-bi-maximal mixing. Part I Type Journal Article
  Year 2019 Publication (up) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 036 - 27pp  
  Keywords CP violation; Discrete Symmetries; Neutrino Physics  
  Abstract We analyze the possible generalized CP symmetries admitted by the Tri-Bi-Maximal (TBM) neutrino mixing. Taking advantage of these symmetries we construct in a systematic way other variants of the standard TBM Ansatz. Depending on the type and number of generalized CP symmetries imposed, we get new mixing matrices, all of which related to the original TBM matrix. One of such revamped TBM variants is the recently discussed mixing matrix of arXiv:1806.03367. We also briefly discuss the phenomenological implications following from these mixing patterns.  
  Address [Chen, Peng] Ocean Univ China, Coll Informat Sci & Engn, 238 Songling Rd, Qingdao 266100, Shandong, Peoples R China, Email: pche@mail.ustc.edu.cn;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000460751400004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3941  
Permanent link to this record
 

 
Author Centelles Chulia, S.; Cepedello, R.; Peinado, E.; Srivastava, R. url  doi
openurl 
  Title Systematic classification of two-loop d=4 Dirac neutrino mass models and the Diracness-dark matter stability connection Type Journal Article
  Year 2019 Publication (up) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 093 - 33pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We provide a complete systematic classification of all two-loop realizations of the dimension four operator for Dirac neutrino masses. Our classification is multi-layered, starting first with a classification in terms of all possible distinct two loop topologies. Then we discuss the possible diagrams for each topology. Model-diagrams originating from each diagram are then considered. The criterion for genuineness is also defined and discussed at length. Finally, as examples, we construct two explicit models which also serve to highlight the intimate connection between the Dirac nature of neutrinos and the stability of dark matter.  
  Address [Chulia, Salvador Centelles; Cepedello, Ricardo; Srivastava, Rahul] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: salcen@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000491092500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4181  
Permanent link to this record
 

 
Author Centelles Chulia, S.; Srivastava, R.; Vicente, A. url  doi
openurl 
  Title The inverse seesaw family: Dirac and Majorana Type Journal Article
  Year 2021 Publication (up) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 248 - 29pp  
  Keywords Beyond Standard Model; Neutrino Physics; Global Symmetries  
  Abstract After developing a general criterion for deciding which neutrino mass models belong to the category of inverse seesaw models, we apply it to obtain the Dirac analogue of the canonical Majorana inverse seesaw model. We then generalize the inverse seesaw model and obtain a class of inverse seesaw mechanisms both for Majorana and Dirac neutrinos. We further show that many of the models have double or multiple suppressions coming from tiny symmetry breaking “mu -parameters”. These models can be tested both in colliders and with the observation of lepton flavour violating processes.  
  Address [Centelles Chulia, Salvador; Vicente, Avelino] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cientif Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: salcen@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000635241800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4772  
Permanent link to this record
 

 
Author Mandal, S.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Electroweak symmetry breaking in the inverse seesaw mechanism Type Journal Article
  Year 2021 Publication (up) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 212 - 28pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We investigate the stability of Higgs potential in inverse seesaw models. We derive the full two-loop RGEs of the relevant parameters, such as the quartic Higgs self-coupling, taking thresholds into account. We find that for relatively large Yukawa couplings the Higgs quartic self-coupling goes negative well below the Standard Model instability scale similar to 10(10) GeV. We show, however, that the “dynamical” inverse seesaw with spontaneous lepton number violation can lead to a completely consistent and stable Higgs vacuum up to the Planck scale.  
  Address [Mandal, Sanjoy; Valle, Jose W. F.] Univ Valencia, Inst Fis Corpuscular, AHEP Grp, CSIC, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: smandal@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000634824700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4780  
Permanent link to this record
 

 
Author Barreiros, D.M.; Joaquim, F.R.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Minimal scoto-seesaw mechanism with spontaneous CP violation Type Journal Article
  Year 2021 Publication (up) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 249 - 21pp  
  Keywords Neutrino Physics; CP violation  
  Abstract We propose simple scoto-seesaw models to account for dark matter and neutrino masses with spontaneous CP violation. This is achieved with a single horizontal Z8 discrete symmetry, broken to a residual Z2 subgroup responsible for stabilizing dark matter. CP is broken spontaneously via the complex vacuum expectation value of a scalar singlet, inducing leptonic CP-violating effects. We find that the imposed Z8 symmetry pushes the values of the Dirac CP phase and the lightest neutrino mass to ranges already probed by ongoing experiments, so that normal-ordered neutrino masses can be cornered by cosmological observations and neutrinoless double beta decay experiments.  
  Address [Barreiros, D. M.; Joaquim, F. R.] Univ Lisbon, Dept Fis, Inst Super Tecn, Av Rovisco Pais 1, P-1049001 Lisbon, Portugal, Email: debora.barreiros@tecnico.ulisboa.pt;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000646917200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4814  
Permanent link to this record
 

 
Author Mandal, S.; Romao, J.C.; Srivastava, R.; Valle, J.W.F. url  doi
openurl 
  Title Dynamical inverse seesaw mechanism as a simple benchmark for electroweak breaking and Higgs boson studies Type Journal Article
  Year 2021 Publication (up) Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 029 - 38pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract The Standard Model (SM) vacuum is unstable for the measured values of the top Yukawa coupling and Higgs mass. Here we study the issue of vacuum stability when neutrino masses are generated through spontaneous low-scale lepton number violation. In the simplest dynamical inverse seesaw, the SM Higgs has two siblings: a massive CP-even scalar plus a massless Nambu-Goldstone boson, called majoron. For TeV scale breaking of lepton number, Higgs bosons can have a sizeable decay into the invisible majorons. We examine the interplay and complementarity of vacuum stability and perturbativity restrictions, with collider constraints on visible and invisible Higgs boson decay channels. This simple framework may help guiding further studies, for example, at the proposed FCC facility.  
  Address [Mandal, Sanjoy; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedratico Jose Beltran 2, E-46980 Valencia, Spain, Email: smandal@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000672676400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4917  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva