toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jordan, D.; Tain, J.L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.; Gomez-Hornillos, M.B.; Caballero-Folch, R.; Cortes, G.; Cano-Ott, D.; Mendoza, E.; Bandac, I.; Bettini, A.; Fraile, L.M.; Domingo, C. doi  openurl
  Title Measurement of the neutron background at the Canfranc Underground Laboratory LSC Type Journal Article
  Year 2013 Publication (up) Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 42 Issue Pages 1-6  
  Keywords Neutron background; Underground physics; He-3 proportional counters  
  Abstract The energy distribution of the neutron background was measured for the first time at Hall A of the Canfranc Underground Laboratory. For this purpose we used a novel approach based on the combination of the information obtained with six large high-pressure He-3 proportional counters embedded in individual polyethylene blocks of different size. In this way not only the integral value but also the flux distribution as a function of neutron energy was determined in the range from 1 eV to 10 MeV. This information is of importance because different underground experiments show different neutron background energy dependence. The high sensitivity of the setup allowed to measure a neutron flux level which is about four orders of magnitude smaller that the neutron background at sea level. The integral value obtained is Phi(Hall A) = (3.44 +/- 0.35) x 10(-6) cm(-2) s(-1).  
  Address [Jordan, D.; Tain, J. L.; Algora, A.; Agramunt, J.; Domingo-Pardo, C.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: jordan@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315371900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1351  
Permanent link to this record
 

 
Author Plaza, J.; Martinez, T.; Becares, V.; Cano-Ott, D.; Villamarin, D.; de Rada, A.P.; Mendoza, E.; Pesudo, V.; Santorelli, R.; Pena, C.; Balibrea-Correa, J.; Boeltzig, A. doi  openurl
  Title Thermal neutron background at Laboratorio Subterraneo de Canfranc (LSC) Type Journal Article
  Year 2023 Publication (up) Astroparticle Physics Abbreviated Journal Astropart Phys.  
  Volume 146 Issue Pages 102793 - 9pp  
  Keywords Underground neutron background; Thermal neutron flux; He-3 proportional counter; Pulse shape discrimination  
  Abstract The thermal neutron background at Laboratorio Subterraneo de Canfranc (LSC) has been determined using several He-3 proportional counter detectors. Bare and Cd shielded counters were used in a series of long measurements. Pulse shape discrimination techniques were applied to discriminate between neutron and gamma signals as well as other intrinsic contributions. Montecarlo simulations allowed us to estimate the sensitivity of the detectors and calculate values for the background flux of thermal neutrons inside Hall-A of LSC. The obtained value is (3.5 +/- 0.8)x10(-6) n/cm(2)s, and is within an order of magnitude compared to similar facilities.  
  Address [Plaza, J.; Martinez, T.; Becares, V; Cano-Ott, D.; Villamarin, D.; Perez de Rada, A.; Mendoza, E.; Pesudo, V; Santorelli, R.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Ave Complutense 40, Madrid 28040, Spain, Email: julio.plaza@ciemat.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-6505 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000928281600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5482  
Permanent link to this record
 

 
Author Plaza, J.; Bécares, V.; Cano-Ott, D.; Gómez, C.; Martínez, T.; Mendoza, E.; Perez de Rada, A.; Pesudo, V.; Sáez-Vergara, J.C.; Santorelli, R.; Villamarín, D.; Ianni, A.; Peña, C.; Balibrea-Correa, J.; Boeltzig, A.; Imbriani, G. url  doi
openurl 
  Title CLYC as a neutron detector in low background conditions Type Journal Article
  Year 2023 Publication (up) European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 11 Pages 1049 - 10pp  
  Keywords  
  Abstract We report on the thermal neutron flux measurements carried out at the Laboratorio Subterraneo de Canfranc (LSC) with two commercial 2 '' x 2 '' CLYC detectors. The measurements were performed as part of an experimental campaign at LSC with He-3 detectors, for establishing the sensitivity limits and use of CLYCs in low background conditions. Acareful characterization of the intrinsic alpha and gamma-ray background in the detectors was required and done with dedicated measurements. It was found that the alpha activities in the two CLYC crystals differ by a factor of three, and the use of Monte Carlo simulations and a Bayesian unfolding method allowed us to determine the specific alpha activities from the U-238 and Th-232 decay chains. The simulations and unfolding also revealed that the gamma-ray background registered in the detectors is dominated by the intrinsic activity of the components of the detector such as the aluminum housing and photo-multiplier and that the activity within the crystal is low in comparison. The data from the neutron flux measurements with the two detectors were analyzed with different methodologies: one based on an innovative alpha/neutron pulse shape discrimination method and one based on the subtraction of the intrinsic alpha background that masks the neutron signals in the region of interest. The neutron sensitivity of the CLYCs was calculated by Monte Carlo simulations with MCNP6 and GEANT4. The resulting thermal neutron fluxes are in good agreement with complementary flux measurement performed with He-3 detectors, but close to the detection limit imposed by the intrinsic a activity.  
  Address [Plaza, J.; Becares, V.; Cano-Ott, D.; Gomez, C.; Martinez, T.; Mendoza, E.; de Rada, A. Perez; Pesudo, V.; Saez-Vergara, J. C.; Santorelli, R.; Villamarin, D.] Ctr Invest Energet Medioambientales & Tecnol, Avda Complutense 40, Madrid 28040, Spain, Email: julio.plaza@ciemat.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001105460800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5835  
Permanent link to this record
 

 
Author Garcia, A.R.; Martinez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marin, J.; Martinez, G.; Mendoza, E.; Ovejero, M.C.; Reillo, E.M.; Santos, C.; Tera, F.J.; Villamarin, D.; Nolte, R.; Agramunt, J.; Algora, A.; Tain, J.L.; Banerjee, K.; Bhattacharya, C.; Pentilla, H.; Rinta-Antila, S.; Gorelov, D. doi  openurl
  Title MONSTER: a time of flight spectrometer for beta-delayed neutron emission measurements Type Journal Article
  Year 2012 Publication (up) Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 7 Issue Pages C05012 - 12pp  
  Keywords Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators); Instrumentation and methods for time-of-flight (TOF) spectroscopy; Neutron detectors (cold, thermal, fast neutrons)  
  Abstract The knowledge of the beta-decay properties of nuclei contributes decisively to our understanding of nuclear phenomena: the beta-delayed neutron emission of neutron rich nuclei plays an important role in the nucleosynthesis r-process and constitutes a probe for nuclear structure of very neutron rich nuclei providing information about the high energy part of the full beta strength (S-beta) function. In addition, beta-delayed neutrons are essential for the control and safety of nuclear reactors. In order to determine the neutron energy spectra and emission probabilities from neutron precursors a MOdular Neutron time-of-flight SpectromeTER (MONSTER) has been proposed for the DESPEC experiment at the future FAIR facility. The design of MONSTER and status of its construction are reported in this work.  
  Address [Garcia, A. R.; Martinez, T.; Cano-Ott, D.; Castilla, J.; Guerrero, C.; Marin, J.; Martinez, G.; Mendoza, E.; Ovejero, M. C.; Reillo, E. M.; Santos, C.; Tera, F. J.; Villamarin, D.] Ctr Invest Energet MedioAmbientales & Tecnol CIEM, E-28040 Madrid, Spain, Email: trino.martinez@ciemat.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000305419700013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1084  
Permanent link to this record
 

 
Author Hornillos, M.B.G.; Gorlychev, V.; Caballero, R.; Cortes, G.; Poch, A.; Pretel, C.; Calvino, F.; Tain, J.L.; Algora, A.; Agramunt, J.; Cano-Ott, D.; Martinez, T.; Mendoza, E.; Rissanen, J.; Aysto, J.; Jokinen, A.; Eronen, T.; Moore, I.; Penttila, H. doi  openurl
  Title Monte Carlo Simulations for the Study of a Moderated Neutron Detector Type Journal Article
  Year 2011 Publication (up) Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.  
  Volume 59 Issue 2 Pages 1573-1576  
  Keywords Monte Carlo simulations; GEANT4; MCNPX; Beta delayed neutron emission; Neutron detector  
  Abstract This work presents the Monte Carlo simulations performed with the MCNPX and GEANT4 codes for the design of a BEta deLayEd Neutron detector, BELEN-20. This detector will be used for the study of beta delayed neutron emission and consists of a block of polyethylene with dimensions 90 x 90 x 80 cm(3) and 20 cylindrical (3)He gas counters. The results of these simulations have been validated experimentally with a (252)Cf source in the laboratory at UPC, Barcelona. Also the first experiment with this detector has been carried out in November 2009 in JYFL, Finland. In this experiment the neutron emission probability after beta decay of the fission products (88)Br, (94,95)Rb, and (138)I has been measured; this data is still under analysis. Simulations with MCNPX and GEANT4 have been performed in order to obtain the efficiency of the BELEN-20 detector for each of the above nuclei using the neutron energy distribution corresponding to each nucleus.  
  Address [Hornillos, MBG; Gorlychev, V; Caballero, R; Cortes, G; Poch, A; Pretel, C; Calvino, F] Univ Politecn Cataluna, Seccio Engn Nucl, E-08028 Barcelona, Spain, Email: belen.gomez@upc.edu  
  Corporate Author Thesis  
  Publisher Korean Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0374-4884 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294080700028 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 733  
Permanent link to this record
 

 
Author n_TOF Collaboration (Cano-Ott, D. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title Neutron Capture Measuremetns on Minor Actinides at the n_TOF Facility at CERN: Past, Present and Future Type Journal Article
  Year 2011 Publication (up) Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.  
  Volume 59 Issue 2 Pages 1809-1812  
  Keywords n_TOF; Total Absorption Calorimeter; TAC; Neutron capture; Cross section; Nuclear waste; Transmutation; Generation IV; Accelerator driven system; ADS; Nuclear reactor; Nuclear energy; Nuclear data; Barium fluoride; Actinides; Plutonium; Americium; Uranium  
  Abstract The successful development of advanced nuclear systems for sustainable energy production and nuclear waste management depends on high quality nuclear data libraries. Recent sensitivity studies and reports [1-3] have identified the need for substantially improving the accuracy of neutron cross-section data for minor actinides. The n_TOF collaboration has initiated an ambitious experimental program for the measurement of neutron capture cross sections of minor actinides. Two experimental setups have been constructed for this purpose: a Total Absorption Calorimeter (TAC) [4] for measuring neutron capture cross-sections of low-mass and/or radioactive samples and a set of two low neutron sensitivity C(6)D(6) detectors for the less radioactive materials.  
  Address [Cano-Ott, D; Alvarez-Velarde, F; Gonzalez-Romero, E; Guerrero, C; Martinez, T; Mendoza, E; Villamarin, D; Vicente, MC] Ctr Invest Energet Medioambientales & Technol CIE, Madrid, Spain, Email: daniel.cano@ciemat.es  
  Corporate Author Thesis  
  Publisher Korean Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0374-4884 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294080700085 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 737  
Permanent link to this record
 

 
Author Guerrero, C.; Cano-Ott, D.; Mendoza, E.; Tain, J.L.; Algora, A.; Berthoumieux, E.; Colonna, N.; Domingo-Pardo, C.; Gonzalez-Romero, E.; Heil, M.; Jordan, D.; Kappeler, F.; Lampoudis, C.; Martinez, T.; Massimi, C.; Plag, R. doi  openurl
  Title Monte Carlo simulation of the n_TOF Total Absorption Calorimeter Type Journal Article
  Year 2012 Publication (up) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 671 Issue Pages 108-117  
  Keywords Monte Carlo simulation; Geant4; Neutron cross-sections; Time-of-flight; Neutron capture  
  Abstract The n_TOF Total Absorption Calorimeter (TAC) is a 4 pi BaF2 segmented detector used at CERN for measuring neutron capture cross-sections of importance for the design of advanced nuclear reactors. This work presents the simulation code that has been developed in GEANT4 for the accurate determination of the detection efficiency of the TAC for neutron capture events. The code allows to calculate the efficiency of the TAC for every neutron capture state, as a function of energy, crystal multiplicity, and counting rate. The code includes all instrumental effects such as the single crystal detection threshold and energy resolution, finite size of the coincidence time window, and signal pile-up. The results from the simulation have been validated with experimental data for a large set of electromagnetic de-excitation patterns: beta-decay of well known calibration sources, neutron capture reactions in light nuclei with well known level schemes like Ti-nat, reference samples used in (n,gamma) measurements like Au-197 and experimental data from an actinide sample like Pu-240. The systematic uncertainty in the determination of the detection efficiency has been estimated for all the cases. As a representative example, the accuracy reached for the case of Au-197(n,gamma) ranges between 0.5% and 2%, depending on the experimental and analysis conditions. Such a value matches the high accuracy required for the nuclear cross-section data needed in advanced reactor design.  
  Address [Guerrero, C.; Cano-Ott, D.; Mendoza, E.; Gonzalez-Romero, E.; Martinez, T.] CIEMAT, Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain, Email: carlos.guerrero@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000301474600013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 973  
Permanent link to this record
 

 
Author Tain, J.L.; Agramunt, J.; Algora, A.; Aprahamian, A.; Cano-Ott, D.; Fraile, L.M.; Guerrero, C.; Jordan, M.D.; Mach, H.; Martinez, T.; Mendoza, E.; Mosconi, M.; Nolte, R. doi  openurl
  Title The sensitivity of LaBr3:Ce scintillation detectors to low energy neutrons: Measurement and Monte Carlo simulation Type Journal Article
  Year 2015 Publication (up) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 774 Issue Pages 17-24  
  Keywords Neutron sensitivity; Scintillation detectors; Lanthanum bromide; Geant4 simulations; Nuclear data libraries  
  Abstract The neutron sensitivity of a cylindrical circle minus 1.5 in x 1.5 in LaBr3:Ce scintillation detector was measured using quasi-monoenergetic neutron beams in the energy range from 40 keV to 2.5 MeV. In this energy range the detector is sensitive to gamma-rays generated in neutron inelastic and capture processes. The experimental energy response was compared with Monte Carlo simulations performed with the Geant4 simulation toolkit using the so-called High Precision Neutron Models. These models rely on relevant information stored in evaluated nuclear data libraries. The performance of the Geant4 Neutron Data Library as well as several standard nuclear data libraries was investigated. In the latter case this was made possible by the use of a conversion tool that allowed the direct use of the data from other libraries in Geant4. Overall it was found that there was good agreement with experiment for some of the neutron data bases like ENDF/B-VII.0 or JENDL-3.3 but not with the others such as ENDF/B-VI.8 or JEFF-3.1.  
  Address [Tain, J. L.; Agramunt, J.; Algora, A.; Jordan, M. D.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-28040 Valencia, Spain, Email: tain@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000347407800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2076  
Permanent link to this record
 

 
Author Tain, J.L.; Algora, A.; Agramunt, J.; Guadilla, V.; Jordan, M.D.; Montaner-Piza, A.; Rubio, B.; Valencia, E.; Cano-Ott, D.; Gelletly, W.; Martinez, T.; Mendoza, E.; Podolyak, Z.; Regan, P.; Simpson, J.; Smith, A.J.; Strachan, J. doi  openurl
  Title A decay total absorption spectrometer for DESPEC at FAIR Type Journal Article
  Year 2015 Publication (up) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 803 Issue Pages 36-46  
  Keywords Total absorption gamma-ray spectrometer; Scintillation detectors; Beta decay; High-energy beam fragmentation facilities  
  Abstract This paper presents the design of a total absorption gamma-ray spectrometer for the determination of beta-decay intensity distributions of exotic nuclear species at the focal plane of the FAIR-NUSTAR Super Fragment Separator. The spectrometer is a key instrument in the DESPEC experiment and the proposed implementation follows extensive design studies and prototype tests. Two options were contemplated, based on Nal(TI) and LaBr3:Ce inorganic scintillation crystals respectively. Monte Carlo simulations and technical considerations determined the optimal configurations consisting of sixteen 15 x 15 x 25 cm(3) crystals for the Nal(Tl) option and one hundred and twenty-eight 5.5 x 5.5 x 11 cm(3) crystals for the LaBr3:Ce option. Minimization of dead material was crucial for maximizing the spectrometer full-energy peak efficiency. Module prototypes were build to verify constructional details and characterize their performance. The measured energy and timing resolution was found to agree rather well with estimates based on simulations of scintillation light transport and collection. The neutron sensitivity of the spectrometer, important when measuring beta-delayed neutron emitters, was investigated by means of Monte Carlo simulations.  
  Address [Tain, J. L.; Algora, A.; Agramunt, J.; Guadilla, V.; Jordan, M. D.; Montaner-Piza, A.; Rubio, B.; Valencia, E.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: tain@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000363464600007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2431  
Permanent link to this record
 

 
Author Garcia, A.R.; Mendoza, E.; Cano-Ott, D.; Nolte, R.; Martinez, T.; Algora, A.; Tain, J.L.; Banerjee, K.; Bhattacharya, C. doi  openurl
  Title New physics model in GEANT4 for the simulation of neutron interactions with organic scintillation detectors Type Journal Article
  Year 2017 Publication (up) Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 868 Issue Pages 73-81  
  Keywords Organic scintillator; Neutron detectors; GEANT4; BC501A; NE213; EJ301  
  Abstract The accurate determination of the response function of organic scintillation neutron detectors complements their experimental characterization. Monte Carlo simulations with GEANT4 can reduce the effort and cost implied, especially for complex detection systems for which the characterization is more challenging. Previous studies have reported on the inaccuracy of GEANT4 in the calculation of the neutron response of organic scintillation detectors above 6 MeV, due to an incomplete description of the neutron-induced alpha production reactions on carbon. We have improved GEANT4 in this direction by incorporating models and data from NRESP, an excellent Monte Carlo simulation tool developed at the Physikalisch-Technische Bundesanstalt (PTB), Germany, for the specific purpose of calculating the neutron response function of organic scintillation detectors. The results have been verified against simulations with NRESP and validated against Time-Of-Flight measurements with an NE213 detector at PTB. This work has potential applications beyond organic scintillation detectors, to other types of detectors where reactions induced by fast neutrons on carbon require an accurate description.  
  Address [Garcia, A. R.; Mendoza, E.; Cano-Ott, D.; Martinez, T.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Ave Complutense 40, Madrid 28040, Spain, Email: daniel.cano@ciemat.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000408406700012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3250  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva