|   | 
Details
   web
Records
Author Albaladejo, M.; Guo, F.K.; Hanhart, C.; Meissner, U.G.; Nieves, J.; Nogga, A.; Yang, Z.
Title Note on X(3872) production at hadron colliders and its molecular structure Type Journal Article
Year 2017 Publication (up) Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 41 Issue 12 Pages 121001 - 3pp
Keywords X(3872); hadronic molecules; exotic hadrons
Abstract The production of the X (3872) as a hadronic molecule in hadron colliders is clarified. We show that the conclusion of Bignamini et al., Phys. Rev. Lett. 103 (2009) 162001, that the production of the X(3872) at high pT implies a non-molecular structure, does not hold. In particular, using the well understood properties of the deuteron wave function as an example, we identify the relevant scales in the production process.
Address [Albaladejo, Miguel] Univ Murcia, Dept Fis, E-30071 Murcia, Spain
Corporate Author Thesis
Publisher Chinese Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000417112000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3397
Permanent link to this record
 

 
Author Albaladejo, M.; Moussallam, B.
Title Form factors of the isovector scalar current and the eta pi scattering phase shifts Type Journal Article
Year 2015 Publication (up) European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 75 Issue 10 Pages 488 - 16pp
Keywords
Abstract A model for S-wave eta pi scattering is proposed which could be realistic in an energy range from threshold up to above 1 GeV, where inelasticity is dominated by the K (K) over bar channel. The T-matrix, satisfying two-channel unitarity, is given in a form which matches the chiral expansion results at order p(4) exactly for the eta pi -> eta pi, eta pi -> K (K) over bar amplitudes and approximately for K (K) over bar -> K (K) over bar. It contains six phenomenological parameters. Asymptotic conditions are imposed which ensure a minimal solution of the Muskhelishvili-Omnes problem, thus allowing one to compute the eta pi and K (K) over bar form factor matrix elements of the I = 1 scalar current from the T-matrix. The phenomenological parameters are determined such as to reproduce the experimental properties of the a(0)(980), a(0)(1450) resonances, as well as the chiral results of the eta pi and K (K) over bar scalar radii, which are predicted to be remarkably small at O(p(4)). This T-matrix model could be used for a unified treatment of the eta pi final-state interaction problem in processes such as eta ' -> eta pi pi, phi -> eta pi gamma or the eta pi initial-state interaction in eta -> 3 pi.
Address [Albaladejo, M.; Moussallam, B.] Univ Paris 11, Grp Phys Theor, IPN UMR8608, Orsay, France, Email: Miguel.Albaladejo@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000362951600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2415
Permanent link to this record
 

 
Author Albaladejo, M.; Guo, F.K.; Hidalgo-Duque, C.; Nieves, J.; Pavon Valderrama, M.
Title Decay widths of the spin-2 partners of the X(3872) Type Journal Article
Year 2015 Publication (up) European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 75 Issue 11 Pages 547 - 26pp
Keywords
Abstract We consider the X(3872) resonance as a J(PC) = 1(++) D (D) over bar* hadronic molecule. According to heavy quark spin symmetry, there will exist a partner with quantum numbers 2(++), X-2, which would be a D*(D) over bar* loosely bound state. The X-2 is expected to decay dominantly into D (D) over bar, D (D) over bar* and (D) over barD* in d-wave. In this work, we calculate the decay widths of the X-2 resonance into the above channels, as well as those of its bottom partner, X-b2, the mass of which comes from assuming heavy flavor symmetry for the contact terms. We find partial widths of the X-2 and X-b2 of the order of a few MeV. Finally, we also study the radiative X-2 -> D (D) over bar*gamma. and X-b2 -> (B) over bar B*gamma decays. These decay modes are more sensitive to the long-distance structure of the resonances and to the D (D) over bar* or B (B) over bar* final state interaction.
Address [Albaladejo, Miguel; Hidalgo-Duque, Carlos; Nieves, Juan] Univ Valencia, Inst Invest Paterna, Ctr Mixto CSIC, Inst Fis Corpuscular IFIC, Valencia 46071, Spain, Email: Miguel.Albaladejo@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000365886000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2487
Permanent link to this record
 

 
Author Albaladejo, M.; Nieves, J.; Oset, E.; Jido, D.
Title Ds0*(2317) and DK scattering in B decays from BaBar and LHCb data Type Journal Article
Year 2016 Publication (up) European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 76 Issue 6 Pages 300 - 8pp
Keywords
Abstract We study the experimental DK invariant mass spectra of the reactions B+ -> (D) over bar (DK+)-D-0-K-0, B-0 -> D-(DK+)-K-0 (measured by the BaBar collaboration) and B-s -> pi(+DK-)-K-0 measured by the LHCb collaboration), where an enhancement right above the threshold is seen. We show that this enhancement is due to the presence of D-s0*(2317), which is a D K bound state in the I (J(P)) = 0(0(+)) sector. We employ a unitarized amplitude with an interaction potential fixed by heavy meson chiral perturbation theory. We obtain a mass M-Ds0* = 2315(-17) (+12 +10)(-5) MeV, and we also show, by means of theWeinberg compositeness condition, that the DK component in the wave function of this state is P-DK = 70(-6 -8)(+4 +4) %, where the first (second) error is statistical (systematic).
Address [Albaladejo, M.; Nieves, J.; Oset, E.] Univ Valencia, Inst Fis Corpuscular IFIC, Inst Invest Paterna, Ctr Mixto,CSIC, Aptd 22085, Valencia 46071, Spain, Email: miguelalbaladejo@gmail.com
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000386034600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2841
Permanent link to this record
 

 
Author Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.
Title Z(c)(3900): confronting theory and lattice simulations Type Journal Article
Year 2016 Publication (up) European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 76 Issue 10 Pages 573 - 9pp
Keywords
Abstract We consider a recent T -matrix analysis by Albaladejo et al. (Phys Lett B 755: 337, 2016), which accounts for the J/psi pi and D*(D) over bar coupled-channels dynamics, and which successfully describes the experimental information concerning the recently discovered Z(c)(3900)(+/-). Within such scheme, the data can be similarly well described in two different scenarios, where Z(c)(3900) is either a resonance or a virtual state. To shed light into the nature of this state, we apply this formalism in a finite box with the aim of comparing with recent Lattice QCD (LQCD) simulations. We see that the energy levels obtained for both scenarios agree well with those obtained in the single-volume LQCD simulation reported in Prelovsek et al. (Phys Rev D 91: 014504, 2015), thus making it difficult to disentangle the two possibilities. We also study the volume dependence of the energy levels obtained with our formalism and suggest that LQCD simulations performed at several volumes could help in discerning the actual nature of the intriguing Z(c)(3900) state.
Address [Albaladejo, Miguel; Fernandez-Soler, Pedro; Nieves, Juan] Univ Valencia, Inst Fis Corpuscular IFIC, Ctr Mixto CSIC, Inst Invest Paterna, Aptdo 22085, Valencia 46071, Spain, Email: miguelalbaladejo@gmail.com
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000388981700001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2877
Permanent link to this record