toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Giusarma, E.; Gerbino, M.; Mena, O.; Vagnozzi, S.; Ho, S.; Freese, K. url  doi
openurl 
  Title Improvement of cosmological neutrino mass bounds Type Journal Article
  Year 2016 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 94 Issue 8 Pages 083522 - 8pp  
  Keywords  
  Abstract The most recent measurements of the temperature and low-multipole polarization anisotropies of the cosmic microwave background from the Planck satellite, when combined with galaxy clustering data from the Baryon Oscillation Spectroscopic Survey in the form of the full shape of the power spectrum, and with baryon acoustic oscillation measurements, provide a 95% confidence level (C.L.) upper bound on the sum of the three active neutrinos Sigma m(nu) < 0.183 eV, among the tightest neutrino mass bounds in the literature, to date, when the same data sets are taken into account. This very same data combination is able to set, at similar to 70% C.L., an upper limit on Sigma m(nu) of 0.0968 eV, a value that approximately corresponds to the minimal mass expected in the inverted neutrino mass hierarchy scenario. If high-multipole polarization data from Planck is also considered, the 95% C.L. upper bound is tightened to Sigma m(nu) < 0.176 eV. Further improvements are obtained by considering recent measurements of the Hubble parameter. These limits are obtained assuming a specific nondegenerate neutrino mass spectrum; they slightly worsen when considering other degenerate neutrino mass schemes. Low-redshift quantities, such as the Hubble constant or the reionization optical depth, play a very important role when setting the neutrino mass constraints. We also comment on the eventual shifts in the cosmological bounds on Sigma m(nu) when possible variations in the former two quantities are addressed.  
  Address [Giusarma, Elena; Ho, Shirley] Carnegie Mellon Univ, Dept Phys, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA, Email: egiusarm@andrew.cmu.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000387120400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2855  
Permanent link to this record
 

 
Author Vagnozzi, S.; Giusarma, E.; Mena, O.; Freese, K.; Gerbino, M.; Ho, S.; Lattanzi, M. url  doi
openurl 
  Title Unveiling nu secrets with cosmological data: Neutrino masses and mass hierarchy Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 96 Issue 12 Pages 123503 - 26pp  
  Keywords  
  Abstract Using some of the latest cosmological data sets publicly available, we derive the strongest bounds in the literature on the sum of the three active neutrino masses, M-nu, within the assumption of a background flat Lambda CDM cosmology. In the most conservative scheme, combining Planck cosmic microwave background temperature anisotropies and baryon acoustic oscillations (BAO) data, as well as the up-to-date constraint on the optical depth to reionization (tau), the tightest 95% confidence level upper bound we find is M-nu < 0.151 eV. The addition of Planck high-l polarization data, which, however, might still be contaminated by systematics, further tightens the bound to M-nu < 0.118 eV. A proper model comparison treatment shows that the two aforementioned combinations disfavor the inverted hierarchy at similar to 64% C.L. and similar to 71% C.L., respectively. In addition, we compare the constraining power of measurements of the full- shape galaxy power spectrum versus the BAO signature, from the BOSS survey. Even though the latest BOSS full-shape measurements cover a larger volume and benefit from smaller error bars compared to previous similar measurements, the analysis method commonly adopted results in their constraining power still being less powerful than that of the extracted BAO signal. Our work uses only cosmological data; imposing the constraint M-nu > 0.06 eV from oscillations data would raise the quoted upper bounds by O(0.1 sigma) and would not affect our conclusions.  
  Address [Vagnozzi, Sunny; Freese, Katherine; Gerbino, Martina] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden, Email: sunny.vagnozzi@fysik.su.se;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000416948100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3396  
Permanent link to this record
 

 
Author Gerbino, M.; Freese, K.; Vagnozzi, S.; Lattanzi, M.; Mena, O.; Giusarma, E.; Ho, S. url  doi
openurl 
  Title Impact of neutrino properties on the estimation of inflationary parameters from current and future observations Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 95 Issue 4 Pages 043512 - 22pp  
  Keywords  
  Abstract We study the impact of assumptions about neutrino properties on the estimation of inflationary parameters from cosmological data, with a specific focus on the allowed contours in the n(s)/r plane, where n(s) is the scalar spectral index and r is the tensor-to-scalar ratio. We study the following neutrino properties: (i) the total neutrino mass M-i = Sigma(i)m(i) (where the index i = 1, 2, 3 runs over the three neutrino mass eigenstates); (ii) the number of relativistic degrees of freedom N-eff at the time of recombination; and (iii) the neutrino hierarchy. Whereas previous literature assumed three degenerate neutrino masses or two massless neutrino species (approximations that clearly do not match neutrino oscillation data), we study the cases of normal and inverted hierarchy. Our basic result is that these three neutrino properties induce < 1 sigma shift of the probability contours in the n(s)/r plane with both current or upcoming data. We find that the choice of neutrino hierarchy (normal, inverted, or degenerate) has a negligible impact. However, the minimal cutoff on the total neutrino mass M-v,M-min = 0 that accompanies previous works using the degenerate hierarchy does introduce biases in the n(s)/r plane and should be replaced by M-v,M-min = 0.059 eV as required by oscillation data. Using current cosmic microwave background (CMB) data from Planck and Bicep/Keck, marginalizing over the total neutrino mass M-v and over r can lead to a shift in the mean value of ns of similar to 0.3 sigma toward lower values. However, once baryon acoustic oscillation measurements are included, the standard contours in the n(s)/r plane are basically reproduced. Larger shifts of the contours in the n(s)/r plane (up to 0.8 sigma) arise for nonstandard values of N-eff. We also provide forecasts for the future CMB experiments Cosmic Origins Explorer (COrE, satellite) and Stage-IV (ground-based) and show that the incomplete knowledge of neutrino properties, taken into account by a marginalization over M-v, could induce a shift of similar to 0.4 sigma toward lower values in the determination of ns (or a similar to 0.8 sigma shift if one marginalizes over N-eff). Comparison to specific inflationary models is shown. Imperfect knowledge of neutrino properties must be taken into account properly, given the desired precision in determining whether or not inflationary models match the future data.  
  Address [Gerbino, Martina; Freese, Katherine; Vagnozzi, Sunny] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, AlbaNova, SE-10691 Stockholm, Sweden, Email: martina.gerbino@fysik.su.se;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000427057900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3514  
Permanent link to this record
 

 
Author Vagnozzi, S.; Dhawan, S.; Gerbino, M.; Freese, K.; Goobar, A.; Mena, O. url  doi
openurl 
  Title Constraints on the sum of the neutrino masses in dynamical dark energy models with w(z) >=-1 are tighter than those obtained in Lambda CDM Type Journal Article
  Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 98 Issue 8 Pages 083501 - 20pp  
  Keywords  
  Abstract We explore cosmological constraints on the sum of the three active neutrino masses M-v in the context of dynamical dark energy (DDE) models with equation of state (EoS) parametrized as a function of redshift z by w(z) = w(0) + w(a)z/ (1 + z), and satisfying w(z) >= -1 for all z. We make use of cosmic microwave background data from the Planck satellite, baryon acoustic oscillation measurements, and supernovae la luminosity distance measurements, and perform a Bayesian analysis. We show that, within these models, the bounds on M-v do not degrade with respect to those obtained in the Lambda CDM case; in fact, the bounds arc slightly tighter, despite the enlarged parameter space. We explain our results based on the observation that, for fixed choices of w(0), w(a) such that w(z) >= -1 (but not w = -1 for all z), the upper limit on M-v is tighter than the Lambda CDM limit because of the well-known degeneracy between w and M-v. The Bayesian analysis we have carried out then integrates over the possible values of w(0)-w(a) such that w(z) >= -1, all of which correspond to tighter limits on M-v than the Lambda CDM limit. We find a 95% credible interval (C.I.) upper bound of M-v < 0.13 eV. This bound can be compared with the 95% C.I. upper bounds of M-v < 0.16 eV, obtained within the Lambda CDM model, and M-v < 0.41 eV, obtained in a DDE model with arbitrary EoS (which allows values of w < -1). Contrary to the results derived for DDE models with arbitrary EoS, we find that a dark energy component with w(z) >= -1 is unable to alleviate the tension between high-redshift observables and direct measurements of the Hubble constant H o . Finally, in light of the results of this analysis, we also discuss the implications for DDE models of a possible determination of the neutrino mass ordering by laboratory searches.  
  Address [Vagnozzi, Sunny; Dhawan, Suhail; Gerbino, Martina; Freese, Katherine; Goobar, Ariel] Stockholm Univ, Oskar Klein Ctr Cosmoparticle Phys, Dept Phys, SE-10691 Stockholm, Sweden, Email: sunny.vagnozzi@fysik.su.se  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000446136900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3749  
Permanent link to this record
 

 
Author Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S. url  doi
openurl 
  Title Nonminimal dark sector physics and cosmological tensions Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 101 Issue 6 Pages 063502 - 20pp  
  Keywords  
  Abstract We explore whether nonstandard dark sector physics might be required to solve the existing cosmological tensions. The properties we consider in combination are (a) an interaction between the dark matter and dark energy components and (b) a dark energy equation of state w different from that of the canonical cosmological constant w = -1. In principle, these two parameters are independent. In practice, to avoid early-time, superhorizon instabilities, their allowed parameter spaces are correlated. Moreover, a clear degeneracy exists between these two parameters in the case of cosmic microwave background (CMB) data. We analyze three classes of extended interacting dark energy models in light of the 2019 Planck CMB results and Cepheid-calibrated local distance ladder H-0 measurements of Riess et al. (R19), as well as recent baryon acoustic oscillation (BAO) and type Ia supernovae (SNeIa) distance data. We find that in quintessence coupled dark energy models, where w > -1, the evidence for a nonzero coupling between the two dark sectors can surpass the 5 sigma significance. Moreover, for both Planck + BAO or Planck + SNeIa, we find a preference for w > -1 at about three standard deviations. Quintessence models are, therefore, in excellent agreement with current data when an interaction is considered. On the other hand, in phantom coupled dark energy models, there is no such preference for a nonzero dark sector coupling. All the models we consider significantly raise the value of the Hubble constant, easing the H-0 tension. In the interacting scenario, the disagreement between Planck thorn BAO and R19 is considerably reduced from 4.3 sigma in the case of the Lambda cold dark matter (Lambda CDM) model to about 2.5 sigma. The addition of low-redshift BAO and SNeIa measurements leaves, therefore, some residual tension with R19 but at a level that could be justified by a statistical fluctuation. Bayesian evidence considerations mildly disfavor both the coupled quintessence and phantom models, while mildly favoring a coupled vacuum scenario, even when late-time datasets are considered. We conclude that nonminimal dark energy cosmologies, such as coupled quintessence, phantom, or vacuum models, are still an interesting route toward softening existing cosmological tensions, even when low-redshift datasets and Bayesian evidence considerations are taken into account.  
  Address [Di Valentino, Eleonora] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Oxford Rd, Manchester M13 9PL, Lancs, England, Email: eleonora.divalentino@manchester.ac.uk;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication (up) Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000517964500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4309  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva