toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author n_TOF Collaboration (Guerrero, C. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. doi  openurl
  Title Performance of the neutron time-of-flight facility n_TOF at CERN Type Journal Article
  Year 2013 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 49 Issue 2 Pages 27 - 15pp  
  Keywords  
  Abstract The neutron time-of-flight facility n_TOF features a white neutron source produced by spallation through 20 GeV/c protons impinging on a lead target. The facility, aiming primarily at the measurement of neutron-induced reaction cross sections, was operating at CERN between 2001 and 2004, and then underwent a major upgrade in 2008. This paper presents in detail all the characteristics of the new neutron beam in the currently available configurations, which correspond to two different collimation systems and two choices of neutron moderator. The characteristics discussed include the intensity and energy dependence of the neutron flux, the spatial profile of the beam, the in-beam background components and the energy resolution/broadening. The discussion of these features is based on dedicated measurements and Monte Carlo simulations, and includes estimations of the systematic uncertainties of the mentioned quantities.  
  Address [Guerrero, C.; Tsinganis, A.; Berthoumieux, E.; Weiss, C.; Chiaveri, E.; Calviani, M.; Vlachoudis, V.; Andriamonje, S.; Boccone, V.; Brugger, M.; Cerutti, F.; Chin, M.; Ferrari, A.; Hernandez-Prieto, A.; Kadi, Y.; Losito, R.; Roman, F.; Rubbia, C.; Versaci, R.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland, Email: carlos.guerrero@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315601600011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1358  
Permanent link to this record
 

 
Author n_TOF Collaboration (Belloni, F. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title Measurement of the neutron-induced fission cross-section of Am-241 at the time-of-flight facility n_TOF Type Journal Article
  Year 2013 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 49 Issue 1 Pages 2 - 6pp  
  Keywords  
  Abstract The neutron-induced fission cross-section of Am-241 has been measured relative to the standard fission cross-section of U-235 between 0.5 and 20 MeV. The experiment was performed at the CERN nTOF facility. Fission fragments were detected by a fast ionization chamber by discriminating against the alpha-particles from the high radioactivity of the samples. The high instantaneous neutron flux and the low background of the nTOF facility enabled us to obtain uncertainties of approximate to 5%. With the present results it was possible to resolve discrepancies between previous data sets and to confirm current evaluations, thus providing important information for design studies of future reactors with improved fuel burn-up.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000315048100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1399  
Permanent link to this record
 

 
Author Guastalla, G. et al; Algora, A.; Domingo-Pardo, C. doi  openurl
  Title Coulomb Excitation of Sn-104 and the Strength of the Sn-100 Shell Closure Type Journal Article
  Year 2013 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 110 Issue 17 Pages 172501 - 5pp  
  Keywords  
  Abstract A measurement of the reduced transition probability for the excitation of the ground state to the first 2(+) state in Sn-104 has been performed using relativistic Coulomb excitation at GSI. Sn-104 is the lightest isotope in the Sn chain for which this quantity has been measured. The result is a key point in the discussion of the evolution of nuclear structure in the proximity of the doubly magic nucleus Sn-100. The value B(E2; 0(+) -> 2(+)) = 0.10(4) e(2)b(2) is significantly lower than earlier results for Sn-106 and heavier isotopes. The result is well reproduced by shell model predictions and therefore indicates a robust N = Z = 50 shell closure.  
  Address Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000317915200008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1423  
Permanent link to this record
 

 
Author n_TOF Collaboration (Barbagallo, M. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. doi  openurl
  Title High-accuracy determination of the neutron flux at n_TOF Type Journal Article
  Year 2013 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 49 Issue 12 Pages 156 - 11pp  
  Keywords  
  Abstract The neutron flux of the nTOF facility at CERN was measured, after installation of the new spallation target, with four different systems based on three neutron-converting reactions, which represent accepted cross sections standards in different energy regions. A careful comparison and combination of the different measurements allowed us to reach an unprecedented accuracy on the energy dependence of the neutron flux in the very wide range (thermal to 1 GeV) that characterizes the nTOF neutron beam. This is a pre-requisite for the high accuracy of cross section measurements at n_TOF. An unexpected anomaly in the neutron-induced fission cross section of U-235 is observed in the energy region between 10 and 30keV, hinting at a possible overestimation of this important cross section, well above currently assigned uncertainties.  
  Address [Barbagallo, M.; Colonna, N.; Mastromarco, M.; Meaze, M.; Tagliente, G.; Variale, V.] Ist Nazl Fis Nucl, Sez Bari, I-70125 Bari, Italy, Email: massimo.barbagallo@ba.infn.it  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000328351000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1663  
Permanent link to this record
 

 
Author n_TOF Collaboration (Zugec, P. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. url  doi
openurl 
  Title Experimental neutron capture data of Ni-58 from the CERN n_TOF facility Type Journal Article
  Year 2014 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 89 Issue 1 Pages 014605 - 9pp  
  Keywords  
  Abstract The Ni-58(n,gamma) cross section has been measured at the neutron time of flight facility n_TOF at CERN, in the energy range from 27 meV up to 400 keV. In total, 51 resonances have been analyzed up to 122 keV. Maxwellian averaged cross sections (MACS) have been calculated for stellar temperatures of kT = 5-100 keV with uncertainties of less than 6%, showing fair agreement with recent experimental and evaluated data up to kT = 50 keV. The MACS extracted in the present work at 30 keV is 34.2 +/- 0.6(stat) +/- 1.8(sys) mb, in agreement with latest results and evaluations, but 12% lower relative to the recent KADoNIS compilation of astrophysical cross sections. When included in models of the s-process nucleosynthesis in massive stars, this change results in a 60% increase of the abundance of Ni-58, with a negligible propagation on heavier isotopes. The reason is that, using both the old or the new MACS, Ni-58 is efficiently depleted by neutron captures.  
  Address [Zugec, P.; Bosnar, D.] Univ Zagreb, Fac Sci, Dept Phys, Zagreb 41000, Croatia, Email: pzugec@phy.hr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000332151100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1727  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva