toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sakai, S.; Oset, E.; Ramos, A. url  doi
openurl 
  Title Triangle singularities in B- -> K- pi- D(s0)+ and B- -> K- pi- D(s1)+ Type Journal Article
  Year 2018 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 54 Issue 1 Pages 10 - 14pp  
  Keywords  
  Abstract We study the appearance of structures in the decay of the B- into K-pi D--(s0)+ (2317) and K-pi D--(s1)+ (2460) final states by forming invariant mass distributions of pi D--(s0)+ and pi D--(s1)+ pairs, respectively. The structure in the distribution is associated to the kinematical triangle singularity that appears when the B- -> K- K*(0) D-0 (B- -> K- K*(0) D*(0)) decay process is followed by the decay of the K*(0) into pi(-) K+ and the subsequent rescattering of the K+ D-0 (K+ D*(0)) pair forming the D-s0(+) (2317) (D-s1(+) (2460)) resonance. We find this type of non-resonant peaks at 2850MeV in the invariant mass of pi D--(s0) pairs from B- -> K- pi(-) D-s0(+) (2317) decays and around 3000MeV in the invariant mass of pi D--(s1)+ pairs from B- -> K- pi(-) D-s1(+)(2460) decays. By employing the measured branching ratios of the B- -> K- K*(0) D-0 and B- -> K- K*(0) D*(0) decays, we predict the branching ratios for the processes B- into K-pi D--(s0)+ (2317) K-pi D--(s1)+ (2460), in the vicinity of the triangle singularity peak, to be about 8 x 10(-6) and 1 x 10(-6), respectively. The observation of this reaction would also give extra support to the molecular picture of the D-s0(+)(2317) and D-s1(+)(2460).  
  Address [Sakai, S.; Oset, E.] Univ Valencia, CSIC, Inst Invest Paterna, Dept Fis Teor,Ctr Mixto, Aptdo 22085, Valencia 46071, Spain, Email: shuntaro.sakai@ific.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000423446700001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 3462  
Permanent link to this record
 

 
Author Martinez Torres, A.; Prelovsek, S.; Oset, E.; Ramos, A. url  doi
openurl 
  Title Effective Field Theories in a Finite Volume Type Journal Article
  Year 2018 Publication Few-Body Systems Abbreviated Journal Few-Body Syst.  
  Volume 59 Issue 6 Pages 139 - 5pp  
  Keywords  
  Abstract In this talk I present the formalism we have used to analyze Lattice data on two meson systems by means of effective field theories. In particular I present the results obtained from a reanalysis of the lattice data on the KD(*()) systems, where the states D-s0*(2317) and D-s1*(2460) are found as bound states of KD and KD *, respectively. We confirm the presence of such states in the lattice data and determine the contribution of the KD channel in the wave function of D-s0*(2317) and that of KD* in the wave function of D-s1*(2460). Our findings indicate a large meson-meson component in the two cases.  
  Address [Martinez Torres, A.] Univ Sao Paulo, Inst Fis, Rua Matao 1371, BR-05508090 Sao Paulo, SP, Brazil, Email: amartine@if.usp.br  
  Corporate Author Thesis  
  Publisher Springer Wien Place of Publication Editor  
  Language English Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177-7963 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000448041400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3772  
Permanent link to this record
 

 
Author Nada, A.; Ramos, A. url  doi
openurl 
  Title An analysis of systematic effects in finite size scaling studies using the gradient flow Type Journal Article
  Year 2021 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 81 Issue 1 Pages 1 - 19pp  
  Keywords  
  Abstract We propose a new strategy for the determination of the step scaling function sigma (u) in finite size scaling studies using the gradient flow. In this approach the determination of sigma (u) is broken in two pieces: a change of the flow time at fixed physical size, and a change of the size of the system at fixed flow time. Using both perturbative arguments and a set of simulations in the pure gauge theory we show that this approach leads to a better control over the continuum extrapolations. Following this new proposal we determine the running coupling at high energies in the pure gauge theory and re-examine the determination of the Lambda -parameter, with special care on the perturbative truncation uncertainties.  
  Address [Nada, Alessandro] DESY, John von Neumann Inst Comp NIC, Platanenallee 6, D-15738 Zeuthen, Germany, Email: alberto.ramos@cern.ch  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000606481000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4678  
Permanent link to this record
 

 
Author Hernandez, P.; Pena, C.; Ramos, A.; Gomez-Cadenas, J.J. url  doi
openurl 
  Title A new formulation of compartmental epidemic modelling for arbitrary distributions of incubation and removal times Type Journal Article
  Year 2021 Publication Plos One Abbreviated Journal PLoS One  
  Volume 16 Issue 2 Pages e0244107 - 22pp  
  Keywords  
  Abstract The paradigm for compartment models in epidemiology assumes exponentially distributed incubation and removal times, which is not realistic in actual populations. Commonly used variations with multiple exponentially distributed variables are more flexible, yet do not allow for arbitrary distributions. We present a new formulation, focussing on the SEIR concept that allows to include general distributions of incubation and removal times. We compare the solution to two types of agent-based model simulations, a spatially homogeneous one where infection occurs by proximity, and a model on a scale-free network with varying clustering properties, where the infection between any two agents occurs via their link if it exists. We find good agreement in both cases. Furthermore a family of asymptotic solutions of the equations is found in terms of a logistic curve, which after a non-universal time shift, fits extremely well all the microdynamical simulations. The formulation allows for a simple numerical approach; software in Julia and Python is provided.  
  Address [Hernandez, Pilar] Univ Valencia, Dept Fis Teor, Valencia, Spain, Email: m.pilar.hernandez@uv.es  
  Corporate Author Thesis  
  Publisher Public Library Science Place of Publication Editor  
  Language English Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000616739700053 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4750  
Permanent link to this record
 

 
Author Del Debbio, L.; Ramos, A. url  doi
openurl 
  Title Lattice determinations of the strong coupling Type Journal Article
  Year 2021 Publication Physics Reports Abbreviated Journal Phys. Rep.-Rev. Sec. Phys. Lett.  
  Volume 920 Issue Pages 1-71  
  Keywords QCD; Renormalization; Strong coupling; Lattice field theory  
  Abstract Lattice QCD has reached a mature status. State of the art lattice computations include u, d, s (and even the c) sea quark effects, together with an estimate of electromagnetic and isospin breaking corrections for hadronic observables. This precise and first principles description of the standard model at low energies allows the determination of multiple quantities that are essential inputs for phenomenology and not accessible to perturbation theory. One of the fundamental parameters that are determined from simulations of lattice QCD is the strong coupling constant, which plays a central role in the quest for precision at the LHC. Lattice calculations currently provide its best determinations, and will play a central role in future phenomenological studies. For this reason we believe that it is timely to provide a pedagogical introduction to the lattice determinations of the strong coupling. Rather than analysing individual studies, the emphasis will be on the methodologies and the systematic errors that arise in these determinations. We hope that these notes will help lattice practitioners, and QCD phenomenologists at large, by providing a self-contained introduction to the methodology and the possible sources of systematic error. The limiting factors in the determination of the strong coupling turn out to be different from the ones that limit other lattice precision observables. We hope to collect enough information here to allow the reader to appreciate the challenges that arise in order to improve further our knowledge of a quantity that is crucial for LHC phenomenology. Crown Copyright & nbsp;(c) 2021 Published by Elsevier B.V. All rights reserved.  
  Address [Del Debbio, Luigi] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland, Email: luigi.del.debbio@ed.ac.uk;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1573 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000659901700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4843  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva