Pellumaj, J. et al, & Perez-Vidal, R. M. (2025). Investigating the collectivity of intruder states along N=49 isotones. Nucl. Phys. A, 1060, 123125–6pp.
Abstract: Intruder states that originate from the promotion of neutrons across the N=50 shell gap are observed along the N=49 isotones (79Zn, 81Ge, 83Se, 85Kr), with the lowest energy in 83Se. The reduction of the N=50 shell gap towards Ni favors the lowering in the energy of these states. Moreover, since the Se nucleus (Z=34) is in the middle of the proton fp-shell (28 <= Z <= 40), it should have the maximum quadrupole correlations, lowering further the energy of these deformed configurations. This makes Se a good candidate for understanding the collectivity of the particle-hole intruder states in this region. Such information could also be used as a testing ground for theoretical models aiming to describe the region in the vicinity of 78Ni. An experiment aiming to measure the lifetime of the 540-keV 1/2+ and 1100-keV 3/2+ intruder states of 83Se was performed at LNL and is reported in this work.
|
KM3NeT Collaboration(Aiello, S. et al), Alves Garre, S., Bariego-Quintana, A., Calvo, D., Cecchini, V., Garcia Soto, A., et al. (2025). On the Potential Cosmogenic Origin of the Ultra-high-energy Event KM3-230213A. Astrophys. J. Lett., 984(2), L41–8pp.
Abstract: On 2023 February 13, the KM3NeT/ARCA telescope observed a track-like event compatible with a ultra-high-energy muon with an estimated energy of 120 PeV, produced by a neutrino with an even higher energy, making it the most energetic neutrino event ever detected. A diffuse cosmogenic component is expected to originate from the interactions of ultra-high-energy cosmic rays with ambient photon and matter fields. The flux level required by the KM3NeT/ARCA event is, however, in tension with the standard cosmogenic neutrino predictions based on the observations collected by the Pierre Auger Observatory and Telescope Array over the last decade of the ultra-high-energy cosmic rays above the ankle (hence from the local Universe, z less than or similar to 1). We show here that both observations can be reconciled by extending the integration of the equivalent cosmogenic neutrino flux up to a redshift of zmax=6 and considering either source evolution effects or the presence of a subdominant independent proton component in the ultra-high-energy cosmic-ray flux, thus placing constraints on known cosmic accelerators.
|
De Romeri, V., Papoulias, D. K., & Sanchez Garcia, G. (2025). Implications of the first CONUS plus measurement of coherent elastic neutrino-nucleus scattering. Phys. Rev. D, 111(7), 075025–19pp.
Abstract: The CONUS & thorn; collaboration has reported their first observation of coherent elastic neutrino-nucleus scattering (CEvNS). The experiment uses reactor electron antineutrinos and germanium detectors with recoil thresholds as low as 160 eVee. With an exposure of 327 kg x d, the measurement was made with a statistical significance of 3.76. We explore several physics implications of this observation, both within the standard model and in the context of new physics. We focus on a determination of the weak mixing angle, nonstandard and generalized neutrino interactions both with heavy and light mediators, neutrino magnetic moments, and the up-scattering of neutrinos into sterile fermions through the sterile dipole portal and new mediators. Our results highlight the role of reactor-based CEvNS experiments in probing a vast array of neutrino properties and new physics models.
|
Aguilar, A. C. et al, Cieri, L., & Miramontes, A. (2025). Latin American Strategy Forum for Research Infrastructure (III LASF4RI Contribution). Braz. J. Phys., 55(4), 145–17pp.
Abstract: The Electron-Ion Collider (EIC), a next generation electron-hadron and electron-nuclei scattering facility, will be built at Brookhaven National Laboratory. The wealth of new data will shape research in hadron physics, from nonperturbative QCD techniques to perturbative QCD improvements and global QCD analyses, for the decades to come. With the present proposal, Latin America based physicists, whose expertise lies on the theory and phenomenology side, make the case for the past and future efforts of a growing community, working hand-in-hand towards developing theoretical tools and predictions to analyze, interpret, and optimize the results that will be obtained at the EIC, unveiling the role of the glue that binds us all. This effort is along the lines of various initiatives taken in the USA and supported by colleagues worldwide, such as the ones by the EIC User Group which were highlighted during the Snowmass Process and the Particle Physics Project Prioritization Panel (P5).
|
Morfouace, P. et al, Benlliure, J., Cortina-Gil, D., & Nacher, E. (2025). An asymmetric fission island driven by shell effects in light fragments. Nature, 641, 339–344.
Abstract: Nuclear fission leads to the splitting of a nucleus into two fragments(1,2). Studying the distribution of the masses and charges of the fragments is essential for establishing the fission mechanisms and refining the theoretical models(3,4). It has value for our understanding of r-process nucleosynthesis(5,6), in which the fission of nuclei with extreme neutron-to-proton ratios is pivotal for determining astrophysical abundances and understanding the origin of the elements(7) and for energy applications(8,9). Although the asymmetric distribution of fragments is well understood for actinides (elements in the periodic table with atomic numbers from 89 to 103) based on shell effects(10), symmetric fission governs the scission process for lighter elements. However, unexpected asymmetric splits have been observed in neutron-deficient exotic nuclei(11), prompting extensive further investigations. Here we present measurements of the charge distributions of fission fragments for 100 exotic fissioning systems, 75 of which have never been measured, and establish a connection between the neutron-deficient sub-lead region and the well-understood actinide region. These new data comprehensively map the asymmetric fission island and provide clear evidence for the role played by the deformed Z = 36 proton shell of the light fragment in the fission of sub-lead nuclei. Our dataset will help constrain the fission models used to estimate the fission properties of nuclei with extreme neutron-to-proton ratios for which experimental data are unavailable.
|