|   | 
Details
   web
Records
Author Addazi, A.; Marciano, A.; Morais, A.P.; Pasechnik, R.; Srivastava, R.; Valle, J.W.F.
Title Gravitational footprints of massive neutrinos and lepton number breaking Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 807 Issue Pages 135577 - 8pp
Keywords
Abstract We investigate the production of primordial Gravitational Waves (GWs) arising from First Order Phase Transitions (FOPTs) associated to neutrino mass generation in the context of type-I and inverse seesaw schemes. We examine both “high-scale” as well as “low-scale” variants, with either explicit or spontaneously broken lepton number symmetry U(1)(L), in the neutrino sector. In the latter case, a pseudo-Goldstone majoron-like boson may provide a candidate for cosmological dark matter. We find that schemes with softly-broken U(1)(L), and with single Higgs-doublet scalar sector lead to either no FOPTs or too weak FOPTs, precluding the detestability of GWs in present or near future measurements. Nevertheless, we found that, in the majoron-like seesaw scheme with spontaneously broken U(1)(L), at finite temperatures, one can have strong FOPTs and non-trivial primordial GW spectra which can fall well within the frequency and amplitude sensitivity of upcoming experiments, including LISA, BBO and u-DECIGO. However, GWs observability clashes with invisible Higgs decay constraints from the LHC. A simple and consistent fix is to assume the majoron-like mass to lie above the Higgs-decay kinematical threshold. We also found that the majoron-like variant of the low-scale seesaw mechanism implies a different GW spectrum than the one expected in the high-scale seesaw. This feature will be testable in future experiments. Our analysis shows that GWs can provide a new and complementary portal to test the neutrino mass generation mechanism.
Address [Addazi, Andrea; Marciano, Antonino] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China, Email: andrea.addazi@lngs.infn.it;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000571765700055 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4543
Permanent link to this record
 

 
Author Leite, J.; Morales, A.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Scotogenic dark matter and Dirac neutrinos from unbroken gauged B – L symmetry Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 807 Issue Pages 135537 - 5pp
Keywords
Abstract We propose a simple extension of the standard model where neutrinos get naturally small “scotogenic” Dirac masses from an unbroken gauged B – L symmetry, ensuring dark matter stability. The associated gauge boson gets mass through the Stueckelberg mechanism. Two scenarios are identified, and the resulting phenomenology briefly sketched.
Address [Leite, Julio; Valle, Jose W. F.] Univ Valencia, CSIC, AHEP Grp, Inst Fis Corpuscular, Parc Cient Paterna,Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: julio.leite@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000571765700016 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4545
Permanent link to this record
 

 
Author Leite, J.; Morales, A.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Dark matter stability from Dirac neutrinos in scotogenic 3-3-1-1 theory Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 102 Issue 1 Pages 015022 - 11pp
Keywords
Abstract We propose the simplest TeV-scale scotogenic extension of the original 3-3-1 theory, where dark matter stability is linked to the Dirac nature of neutrinos, which results from an unbroken B – L gauge symmetry. The new gauge bosons get masses through the interplay of spontaneous symmetry breaking a la Higgs and the Stueckelberg mechanism.
Address [Leite, Julio; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: julio.leite@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000551342000007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4470
Permanent link to this record
 

 
Author Peinado, E.; Reig, M.; Srivastava, R.; Valle, J.W.F.
Title Dirac neutrinos from Peccei-Quinn symmetry: A fresh look at the axion Type Journal Article
Year 2020 Publication Modern Physics Letters A Abbreviated Journal Mod. Phys. Lett. A
Volume 35 Issue 21 Pages 2050176 - 9pp
Keywords Peccei-Quinn symmetry; axion; neutrinos
Abstract We show that a very simple solution to the strong CP problem naturally leads to Dirac neutrinos. Small effective neutrino masses emerge from a type-I Dirac seesaw mechanism. Neutrino mass limits probe the axion parameters in regions currently inaccessible to conventional searches.
Address [Peinado, Eduardo] Univ Nacl Autonoma Mexico, Inst Fis, AP 20-364, Ciudad De Mexico 01000, Mexico, Email: epeinado@fisica.unam.mx;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-7323 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000550796000006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4467
Permanent link to this record
 

 
Author Mandal, S.; Srivastava, R.; Valle, J.W.F.
Title Consistency of the dynamical high-scale type-I seesaw mechanism Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 11 Pages 115030 - 15pp
Keywords
Abstract We analyze the consistency of electroweak breaking within the simplest high-scale SU(3)(c) circle times SU(2)(L) circle times U(1)(Y) type-I seesaw mechanism. We derive the full two-loop renormalization group equations of the relevant parameters, including the quartic Higgs self-coupling of the Standard Model. For the simplest case of bare “right-handed” neutrino mass terms we find that, with large Yukawa couplings, the Higgs quartic self-coupling becomes negative much below the seesaw scale, so that the model may be inconsistent even as an effective theory. We show, however, that the “dynamical” type-I high-scale seesaw with spontaneous lepton number violation has better stability properties.
Address [Mandal, Sanjoy; Valle, Jose W. F.] Univ Valencia, CSIC, AHEP Grp, Inst Fis Corpuscular, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: smandal@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000541704500012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4440
Permanent link to this record