toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chen, P.; Ding, G.J.; Rojas, A.D.; Vaquera-Araujo, C.A.; Valle, J.W.F. url  doi
openurl 
  Title Warped flavor symmetry predictions for neutrino physics Type Journal Article
  Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 007 - 27pp  
  Keywords Quark Masses and SM Parameters; Neutrino Physics; Discrete and Finite Symmetries  
  Abstract A realistic five-dimensional warped scenario with all standard model fields propagating in the bulk is proposed. Mass hierarchies would in principle be accounted for by judicious choices of the bulk mass parameters, while fermion mixing angles are restricted by a Delta(27) flavor symmetry broken on the branes by flavon fields.The latter gives stringent predictions for the neutrino mixing parameters, and the Dirac CP violation phase, all described in terms of only two independent parameters at leading order. The scheme also gives an adequate CKM fit and should be testable within upcoming oscillation experiments.  
  Address [Chen, Peng; Ding, Gui-Jun] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China, Email: pche@mail.ustc.edu.cn;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000367831200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2518  
Permanent link to this record
 

 
Author Ayala, C.; Cvetic, G. url  doi
openurl 
  Title anQCD: Fortran programs for couplings at complex momenta in various analytic QCD models Type Journal Article
  Year 2016 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.  
  Volume 199 Issue Pages 114-117  
  Keywords Analytic (holomorphic) QCD coupling; Fractional Analytic Perturbation Theory; Two-delta analytic QCD model; Massive Perturbation Theory; Perturbative QCD; Renormalization group evolution  
  Abstract We provide three Fortran programs which evaluate the QCD analytic (holomorphic) couplings A(v)(Q(2)) for complex or real squared momenta Q(2). These couplings are holomorphic analogs of the powers a(Q(2))(v) of the underlying perturbative QCD (pQCD) coupling a(Q(2)) equivalent to alpha(s)(Q(2))/pi, in three analytic QCD models (anQCD): Fractional Analytic Perturbation Theory (FAPT), Two-delta analytic QCD (2 delta anQCD), and Massive Perturbation Theory (MPT). The index v can be noninteger. The provided programs do basically the same job as the Mathematica package anQCD.m published by us previously (Ayala and Cvetic, 2015), but are now written in Fortran. Program summary Program title: AanQCDext Catalogue identifier: AEYKv10 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEYICv1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 12105 No. of bytes in distributed program, including test data, etc.: 98822 Distribution format: tar.gz Programming language: Fortran. Computer: Any work-station or PC where Fortran 95/200312008 (gfortran) is running. Operating system: Operating system Linux (Ubuntu and Scientific Linux), Windows (in all cases using gfortran). Classification: 11.1, 11.5. Nature of problem: Calculation of values of the running analytic couplings A(v)(Q(2); N-f) for general complex squared momenta Q(2) equivalent to -q(2), in three analytic QCD models, where A(v)(Q(2); N-f) is the analytic (holomorphic) analog of the power (alpha(s)(Q(2); N-f)/pi)(v). Here, A(v)(Q(2); N-f) is a holomorphic function in the Q(2) complex plane, with the exception of the negative semiaxis (-infinity, -M-thr(2)], reflecting the analyticity properties of the spacelike renormalization invariant quantities D(Q(2)) in QCD. In contrast, the perturbative QCD power (alpha(s)(Q(2); N-f)/pi)(v) has singularities even outside the negative semiaxis (Landau ghosts). The three considered models are: Analytic Perturbation theory (APT); Two-delta analytic QCD (2 delta anQCD); Massive Perturbation Theory (MPT). We refer to Ref. [1] for more details and literature. Solution method: The Fortran programs for FAPT and 2 delta anQCD models contain routines and functions needed to perform two-dimensional numerical integrations involving the spectral function, in order to evaluate A(v)(Q(2)) couplings. In MPT model, one-dimensional numerical integration involving A(1)(Q(2)) is sufficient to evaluate any A(v)(Q(2)) coupling. Restrictions: For unphysical choices of the input parameters the results are meaningless. When Q(2) is close to the cut region of the couplings (Q(2) real negative), the calculations can take more time and can have less precision. Running time: For evaluation of a set of about 10 related couplings, the times vary in the range t similar to 10(1)-10(2) s. MPT requires less time, t similar to 1-10(1) s. References: [1] C. Ayala and G. Cvetic, anQCD: a Mathematica package for calculations in general analytic QCD models, Comput. Phys. Commun. 190 (2015) 182.  
  Address [Ayala, Cesar] Univ Valencia, Dept Theoret Phys, E-46100 Valencia, Spain, Email: c.ayala86@gmail.com;  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000367113200012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2501  
Permanent link to this record
 

 
Author Bordes, J.; Hong-Mo, C.; Tsun, T.S. url  doi
openurl 
  Title A first test of the framed standard model against experiment Type Journal Article
  Year 2015 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 30 Issue 11 Pages 1550051 - 34pp  
  Keywords Higgs boson; fermion generations; mixing and neutrino oscillations; mass hierarchy; vielbeins  
  Abstract The framed standard model (FSM) is obtained from the standard model by incorporating, as field variables, the frame vectors (vielbeins) in internal symmetry space. It gives the standard Higgs boson and 3 generations of quarks and leptons as immediate consequences. It gives moreover a fermion mass matrix of the form: m = mT alpha alpha dagger, where alpha is a vector in generation space independent of the fermion species and rotating with changing scale, which has already been shown to lead, generically, to up-down mixing, neutrino oscillations and mass hierarchy. In this paper, pushing the FSM further, one first derives to 1-loop order the RGE for the rotation of alpha, and then applies it to fit mass and mixing data as a first test of the model. With 7 real adjustable parameters, 18 measured quantities are fitted, most (12) to within experimental error or to better than 0.5 percent, and the rest (6) not far off. (A summary of this fit can be found in Table 2 of this paper.) Two notable features, both generic to FSM, not just specific to the fit, are: (i) that a theta-angle of order unity in the instanton term in QCD would translate via rotation into a Kobayashi-Maskawa phase in the CKM matrix of about the observed magnitude (J similar to 10(-5)), (ii) that it would come out correctly that m(u) < m(d), despite the fact that m(t) >> m(b), m(c) >> m(s). Of the 18 quantities fitted, 12 are deemed independent in the usual formulation of the standard model. In fact, the fit gives a total of 17 independent parameters of the standard model, but 5 of these have not been measured by experiment.  
  Address [Bordes, Jose] Univ Valencia, Dept Fis Teor, E-46100 Burjassot, Valencia, Spain, Email: jose.m.bordes@uv.es;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000352992800009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2187  
Permanent link to this record
 

 
Author Carrasco, N.; Ciuchini, M.; Dimopoulos, P.; Frezzotti, R.; Gimenez, V.; Herdoiza, G.; Lubicz, V.; Michael, C.; Picca, E.; Rossi, G.C.; Sanfilippo, F.; Shindler, A.; Silvestrini, L.; Simula, S.; Tarantino, C. url  doi
openurl 
  Title B-physics from N-f=2 tmQCD: the Standard Model and beyond Type Journal Article
  Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 016 - 52pp  
  Keywords Lattice QCD; B-Physics; Beyond Standard Model; Quark Masses and SM Parameters  
  Abstract We present a lattice QCD computation of the b-quark mass, the B and B-s decay constants, the B-mixing bag parameters for the full four-fermion operator basis as well as determinations for xi and f(Bq) root B-i((q)) extrapolated to the continuum limit and to the physical pion mass. We used N-f = 2 twisted mass Wilson fermions at four values of the lattice spacing with pion masses ranging from 280 to 500 MeV. Extrapolation in the heavy quark mass from the charm to the bottom quark region has been carried out on ratios of physical quantities computed at nearby quark masses, exploiting the fact that they have an exactly known infinite mass limit. Our results are m(b)(m(b), (MS) over bar) = 4.29(12) GeV, f(Bs) = 228(8) MeV, f(B) = 189(8) MeV and f(Bs)/f(B) = 1.206(24). Moreover with our results for the bag-parameters we find xi = 1.225(31), B-1((s))/B-1((d)) = 1.01(2), f (Bd) root(B) over cap ((d))(1) = 216(10) MeV and integral Bs root(B) over cap ((s))(1) = 262(10) MeV. We also computed the bag parameters for the complete basis of the four-fermion operators which are required in beyond the SM theories. By using these results for the bag parameters we are able to provide a refined Unitarity Triangle analysis in the presence of New Physics, improving the bounds coming from B-(s) -(B) over bar ((s)) mixing.  
  Address [Carrasco, N.; Gimenez, V.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Valencia, Spain, Email: nuria.carrasco@uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000347824200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2086  
Permanent link to this record
 

 
Author MoEDAL Collaboration (Acharya, B. et al); Bernabeu, J.; Garcia, C.; King, M.; Mitsou, V.A.; Vento, V.; Vives, O. url  doi
openurl 
  Title The physics programme of the MoEDAL experiment at the LHC Type Journal Article
  Year 2014 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 29 Issue 23 Pages 1430050 - 91pp  
  Keywords MoEDAL; LHC magnetic monopole; monopolium; dyons; (pseudo-)stable massive charged particle; supersymmetry; technicolor; extra dimensions; dark matter; doubly charged particles; highly ionizing particles; physics beyond the Standard Model  
  Abstract The MoEDAL experiment at Point 8 of the LHC ring is the seventh and newest LHC experiment. It is dedicated to the search for highly-ionizing particle avatars of physics beyond the Standard Model, extending significantly the discovery horizon of the LHC. A MoEDAL discovery would have revolutionary implications for our fundamental understanding of the Microcosm. MoEDAL is an unconventional and largely passive LHC detector comprised of the largest array of Nuclear Track Detector stacks ever deployed at an accelerator, surrounding the intersection region at Point 8 on the LHC ring. Another novel feature is the use of paramagnetic trapping volumes to capture both electrically and magnetically charged highly-ionizing particles predicted in new physics scenarios. It includes an array of TimePix pixel devices for monitoring highly-ionizing particle backgrounds. The main passive elements of the MoEDAL detector do not require a trigger system, electronic readout, or online computerized data acquisition. The aim of this paper is to give an overview of the MoEDAL physics reach, which is largely complementary to the programs of the large multipurpose LHC detectors ATLAS and CMS.  
  Address [Acharya, B.; Alexandre, J.; Ellis, J. R.; Fairbairn, M.; Mavromatos, N. E.; Sakellariadou, M.; Sarkar, S.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: jpinfold@ualberta.ca  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000342220300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1950  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva