AGATA Collaboration(John, P. R. et al), & Gadea, A. (2014). Shape evolution in the neutron-rich osmium isotopes: Prompt gamma-ray spectroscopy of Os-196. Phys. Rev. C, 90(2), 021301–6pp.
Abstract: The shape transition in the neutron-rich Os isotopes is studied by investigating the neutron-rich Os-196 nucleus through in-beam gamma-ray spectroscopy using a two-proton transfer reaction from a Pt-198 target to a Se-82 beam. The beam-like recoils were detected and identified with the large-acceptance magnetic spectrometer PRISMA, and the coincident gamma rays were measured with the advanced gamma tracking array (AGATA) demonstrator. The de-excitation of the low-lying levels of the yrast-band of Os-196 were identified for the first time. The results are compared with state-of-the-art beyond-mean-field calculations, performed for the even-even Os188-198 isotopes. The new results suggest a smooth transition in the Os isotopes from a more axial rotational behavior towards predominately vibrational nuclei through triaxial configurations. An almost perfect gamma-unstable/triaxial rotor yrast band is predicted for Os-196 which is in agreement with the experimentally measured excited states.
|
AGATA Collaboration(Crespi, F. C. L. et al), & Gadea, A. (2014). Isospin Character of Low-Lying Pygmy Dipole States in Pb-208 via Inelastic Scattering of O-17 Ions. Phys. Rev. Lett., 113(1), 012501–5pp.
Abstract: The properties of pygmy dipole states in Pb-208 were investigated using the Pb-208(O-17, O-17'gamma) reaction at 340 MeV and measuring the gamma decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted gamma rays and of the scattered particles were measured. The results are compared with (gamma, gamma') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2(+) and 3(-) states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first time. This has allowed us to extract the isoscalar component of the 1(-) excited states from 4 to 8 MeV.
|
Goasduff, A., Valiente-Dobon, J. J., Lunardi, S., Haas, F., Gadea, A., de Angelis, G., et al. (2014). Counting rate measurements for lifetime experiments using the RDDS method with the new generation gamma-ray array AGATA. Nucl. Instrum. Methods Phys. Res. A, 758, 1–3.
Abstract: The differential Recoil Distance Doppler Shift (RDDS) method after multinucleon transfer (MNT) reactions to measure lifetimes of excited states in neutron-rich nuclei requires the use of a thick energy degrader for the recoiling ejectiles that are then detected in a spectrometer. This type of measurements greatly benefits from the use of the new generation segmented gamma-ray detectors, such as the AGATA demonstrator which offers unprecedented energy and angular resolutions. In order to make an optimized choice of the material and the thickness of the degrader for lifetime measurements using the RODS method after MNT, an experiment has been performed with the AGATA demonstrator. Counting rate measurements for different degraders are presented.
|
Krzysiek, M. et al, Gadea, A., Huyuk, T., & Barrientos, D. (2014). Study of the soft dipole modes in Ce-140 via inelastic scattering of O-17. Phys. Scr., 89(5), 054016–6pp.
Abstract: The main aim of this study was a deeper understanding of the nuclear structure properties of the soft dipole modes in Ce-140, excited via inelastic scattering of weakly bound O-17 projectiles. An important aim was to investigate the 'splitting' of the PDR into two parts: a low-energy isoscalar component dominated by neutron-skin oscillations and a higher-energy component lying on the tail of the giant dipole resonance of a rather isovector character. This was already observed for this nucleus, investigated in (alpha, alpha') and (gamma,gamma') experiments. The experiment was performed at Laboratori Nazionali di Legnaro, Italy. Inelastic scattering of O-17 ion beam at 20 MeV A(-1) was used to excite the resonance modes in the Ce-140 target. Gamma-rays were registered by five triple clusters of AGATA-Demonstrator and nine large volume scintillators (LaBr3). The scattered O-17 ions were identified by two Delta E – E Si telescopes of the TRACE array mounted inside the scattering chamber. The telescopes consisted of two segmented Si-pad detectors, each of 60 pixels. Very preliminary data have shown a strong domination of the E1 transitions in the 'pygmy' region with a character more similar to the one obtained in alpha scattering experiment.
|
Taprogge, J. et al, Gadea, A., & Montaner-Piza, A. (2014). 1p(3/2) Proton-Hole State in Sn-132 and the Shell Structure Along N=82. Phys. Rev. Lett., 112(13), 132501–6pp.
Abstract: A low-lying state in In-131(82), the one-proton hole nucleus with respect to double magic Sn-132, was observed by its gamma decay to the I-pi 1/2(-) beta-emitting isomer. We identify the new state at an excitation energy of E-x = 1353 keV, which was populated both in the beta decay of Cd-131(83) and after beta-delayed neutron emission from Cd-132(84), as the previously unknown pi p(3/2) single-hole state with respect to the Sn-132 core. Exploiting this crucial new experimental information, shell-model calculations were performed to study the structure of experimentally inaccessible N = 82 isotones below Sn-132. The results evidence a surprising absence of proton subshell closures along the chain of N = 82 isotones. The consequences of this finding for the evolution of the N = 82 shell gap along the r-process path are discussed.
|
Morales, A. I. et al, Gadea, A., & Algora, A. (2014). beta-decay studies of neutron-rich Tl, Pb, and Bi isotopes. Phys. Rev. C, 89(1), 014324–13pp.
Abstract: The fragmentation of relativistic uranium projectiles has been exploited at the Gesellschaft fur Schwerionenforschung laboratory to investigate the beta decay of neutron-rich nuclei just beyond Pb-208. This paper reports on beta-delayed gamma decays of Tl211-213, Pb-215, and Bi215-219 de-exciting states in the daughters Pb211-213, Bi-215, and Po215-219. The resulting partial level schemes, proposed with the help of systematics and shell-model calculations, are presented. The role of allowed Gamow-Teller and first-forbidden beta transitions in this mass region is discussed.
|
Aydin, S. et al, Gadea, A., & Huyuk, T. (2014). High-spin level structure of S-35. Phys. Rev. C, 89(1), 014310–9pp.
Abstract: The nucleus S-35 has been studied by in-beam gamma-ray spectroscopy using the Mg-24(N-14,3p) fusion-evaporation reaction at E-lab = 40 MeV. A level scheme extended up to J(pi) = 17/2(+) at 8023 keV and J(pi) = 13/2(-) at 6352 keV has been established. Lifetimes of six excited states have been determined by applying the Doppler shift attenuation method. The experimental data have been compared with the results of large-scale shell model calculations performed using different effective interactions and model spaces allowing particle-hole excitations across the N = Z = 20 shell gap.
|
AGATA Collaboration(Modamio, V. et al), Gadea, A., Algora, A., & Huyuk, T. (2013). Lifetime measurements in neutron-rich Co-63,Co-65 isotopes using the AGATA demonstrator. Phys. Rev. C, 88(4), 044326–6pp.
Abstract: Lifetimes of the low-lying (11/2(-)) states in Co-63,Co-65 have been measured employing the recoil distance doppler shift method (RDDS) with the AGATA gamma-ray array and the PRISMA mass spectrometer. These nuclei were populated via a multinucleon transfer reaction by bombarding a U-238 target with a beam of Ni-64. The experimental B(E2) reduced transition probabilities for Co-63,Co-65 are well reproduced by large-scale shell-model calculations that predict a constant trend of the B(E2) values up to the N = 40 Co-67 isotope.
|
Egea, F. J. et al, Gadea, A., Barrientos, D., & Huyuk, T. (2013). Design and Test of a High-Speed Flash ADC Mezzanine Card for High-Resolution and Timing Performance in Nuclear Structure Experiments. IEEE Trans. Nucl. Sci., 60(5), 3526–3531.
Abstract: This work describes new electronics for the EX-OGAM2 (HP-Ge detector array) and NEDA (BC501A-based neutron detector array). A new digitizing card with high resolution has been designed for gamma-ray and neutron spectroscopy experiments. The higher bandwidth requirement of the NEDA signals, together with the necessity for accuracy, require a high sampling rate in order to preserve the shape for real-time Pulse Shape Analysis (PSA). The PSA is of paramount importance for the NEDA to discriminate between neutrons and gamma-ray signals. Both high resolution and high speed parameters are often difficult to achieve in a single electronic unit. These constraints, together with the need to build new digitizing electronics to improve performance and flexibility of signal analysis in nuclear physics experiments, led to the development a new FADC mezzanine card. In this work, the design and development are described, including the characterization procedure and the preliminary measurement results.
|
Barrientos, D., Gonzalez, V., Bellato, M., Gadea, A., Bazzacco, D., Blasco, J. M., et al. (2013). Multiple Register Synchronization With a High-Speed Serial Link Using the Aurora Protocol. IEEE Trans. Nucl. Sci., 60(5), 3521–3525.
Abstract: In this work, the development and characterization of a multiple synchronous registers interface communicating with a high-speed serial link and using the Aurora protocol is presented. A detailed description of the developing process and the characterization methods and hardware test benches are also included. This interface will implement the slow control buses of the digitizer cards for the second generation of electronics for the Advanced GAmma Tracking Array (AGATA).
|