toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author del Rio, A.; Ester, E.A. url  doi
openurl 
  Title Electrically charged black hole solutions in semiclassical gravity and dynamics of linear perturbations Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 10 Pages 105022 - 23pp  
  Keywords  
  Abstract We explore quantum corrections of electrically charged black holes subject to vacuum polarization effects of fermion fields in QED. Solving this problem exactly is challenging so we restrict to perturbative corrections that one can obtain using the heat kernel expansion in the one -loop effective action for electrons. Starting from the corrections originally computed by Drummond and Hathrell, we solve the full semiclassical Einstein -Maxwell system of coupled equations to leading order in Planck 's constant and find a new electrically charged, static black hole solution. To probe these quantum corrections, we study electromagnetic and gravitational (axial) perturbations on this background and derive the coupled system of Regge-Wheeler master equations that govern the propagation of these waves. In the classical limit, our results agree with previous findings in the literature. We finally compare these results with those that one can obtain by working out the Euler-Heisenberg effective action. We find again a new electrically charged static black hole spacetime and derive the coupled system of Regge-Wheeler equations governing the propagation of axial electromagnetic and gravitational perturbations. Results are qualitatively similar in both cases. We briefly discuss some challenges found in the numerical computation of the quasinormal mode frequency spectra when quantum corrections are included.  
  Address [del Rio, Adrian] Univ Valencia, Dept Fis Teor, CSIC, Dr Moliner 50, Burjassot 46100, Valencia, Spain, Email: adrian.rio@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001239211500007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6151  
Permanent link to this record
 

 
Author Servant, G.; Simakachorn, P. url  doi
openurl 
  Title Ultrahigh frequency primordial gravitational waves beyond the kHz: The case of cosmic strings Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 10 Pages 103538 - 24pp  
  Keywords  
  Abstract We investigate gravitational -wave backgrounds (GWBs) of primordial origin that would manifest only at ultrahigh frequencies, from kilohertz to 100 gigahertz, and leave no signal at LIGO, the Einstein Telescope, the Cosmic Explorer, LISA, or pulsar -timing arrays. We focus on GWBs produced by cosmic strings and make predictions for the GW spectra scanning over high-energy scale (beyond 10 10 GeV) particle physics parameters. Signals from local string networks can easily be as large as the big bang nucleosynthesis/ cosmic microwave background bounds, with a characteristic strain as high as 10 – 26 in the 10 kHz band, offering prospects to probe grand unification physics in the 10 14 -10 17 GeV energy range. In comparison, GWB from axionic strings is suppressed (with maximal characteristic strain similar to 10 – 31 ) due to the early matter era induced by the associated heavy axions. We estimate the needed reach of hypothetical futuristic GW detectors to probe such GWB and, therefore, the corresponding high-energy physics processes. Beyond the information of the symmetry -breaking scale, the high -frequency spectrum encodes the microscopic structure of the strings through the position of the UV cutoffs associated with cusps and kinks, as well as potential information about friction forces on the string. The IR slope, on the other hand, reflects the physics responsible for the decay of the string network. We discuss possible strategies for reconstructing the scalar potential, particularly the scalar self -coupling, from the measurement of the UV cutoff of the GW spectrum.  
  Address [Servant, Geraldine] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: peera.simakachorn@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001238459100006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6150  
Permanent link to this record
 

 
Author Rossi, R.R.; Sanchez Garcia, G.; Tortola, M. url  doi
openurl 
  Title Probing nuclear properties and neutrino physics with current and future CEνNS experiments Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 9 Pages 095044 - 17pp  
  Keywords  
  Abstract The recent observation of coherent elastic neutrino-nucleus scattering (CEvNS) with neutrinos from pion decay at rest (N-DAR) sources by the COHERENT Collaboration has raised interest in this process in the search for new physics. Unfortunately, current uncertainties in the determination of nuclear parameters relevant to those processes can hide new physics effects. This is not the case for processes involving lower-energy neutrino sources such as nuclear reactors. Note, however, that a CEvNS measurement with reactor neutrinos depends largely on a (still-missing) precise determination of the quenching factor at very low energies, making its observation more challenging. In the upcoming years, once this signal is confirmed, a combined analysis of N-DAR and reactor CEvNS experiments will be very useful to probe particle and nuclear physics, with a reduced dependence on nuclear uncertainties. In this work, we explore this idea by simultaneously testing the sensitivity of current and future CEvNS experiments to neutrino nonstandard interactions (NSIs) and the neutron root mean square (rms) radius, considering different neutrino sources as well as several detection materials. We show how the interplay between future reactor and accelerator CEvNS experiments can help to get robust constraints on the neutron rms and to break degeneracies between the NSI parameters. Our forecast could be used as a guide to optimize the experimental sensitivity to the parameters under study.  
  Address [Rossi, R. R.] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083859 Campinas, SP, Brazil, Email: gsanchez@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001238451900005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6149  
Permanent link to this record
 

 
Author Bayar, M.; Molina, R.; Oset, E.; Liu, M.Z.; Geng, L.S. url  doi
openurl 
  Title Subtleties in triangle loops for Ds+ → ρ+ η → π+ π0 η in a0(980) production Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 7 Pages 076027 - 7pp  
  Keywords  
  Abstract We address a general problem in the evaluation of triangle loops stemming from the consideration of the range of the interaction involved in some of the vertices, as well as the energy dependence of the width of some unstable particles in the loop. We find sizeable corrections from both effects. We apply that to a loop relevant to the D + s -> pi + pi 0 eta decay, and find reductions of about a factor of 4 in the mass distribution of invariant mass of the pi eta in the region of the a 0 ( 980 ) . The method used is based on the explicit analytical evaluation of the q 0 integration in the d 4 q loop integration, using Cauchy 's residues method, which at the same time offers an insight on the convergence of the integrals and the effect of form factors and cutoffs.  
  Address [Bayar, M.] Kocaeli Univ, Dept Phys, TR-41380 Izmit, Turkiye, Email: melahat.bayar@kocaeli.edu;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001236271000017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6211  
Permanent link to this record
 

 
Author Xiao, C.W.; Dias, J.M.; Dai, L.R.; Liang, W.H.; Oset, E. url  doi
openurl 
  Title Triangle singularity in the J/ψ → ϕ π+ a−0(π−η) ,ϕ π− a+0(π+η) decays Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 7 Pages 074033 - 11pp  
  Keywords  
  Abstract We study the J= psi -> phi pi + a 0 ( 980 ) – ( a – 0 -> pi – eta ) decay, evaluating the double mass distribution in terms of the pi – eta and pi + a – 0 invariant masses. We show that the pi – eta mass distribution exhibits the typical cusp structure of the a 0 ( 980 ) seen in recent high statistics experiments, and the pi + a – 0 spectrum shows clearly a peak around M inv ( pi + a – 0 ) = 1420 MeV, corresponding to a triangle singularity. When integrating over the two invariant masses we find a branching ratio for this decay of the order of 10 – 5 , which is easily accessible in present laboratories. We also call attention to the fact that the signal obtained is compatible with a bump experimentally observed in the eta pi + pi – mass distribution in the J= psi -> phi eta pi + pi – decay and encourage further analysis to extract from there the phi pi + a – 0 and phi pi – a + 0 decay modes.  
  Address [Xiao, C. W.; Liang, W. H.; Oset, E.] Guangxi Normal Univ, Dept Phys, Guilin 541004, Peoples R China, Email: xiaochw@gxnu.edu.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001236271000012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6212  
Permanent link to this record
 

 
Author Alkofer, R.; Llanes-Estrada, F.J.; Salas-Bernardez, A. url  doi
openurl 
  Title Spinning pairs: Supporting 3P0 quark-pair creation from Landau-gauge Green's functions Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 7 Pages 074015 - 21pp  
  Keywords  
  Abstract Abundant phenomenology suggests that strong decays from relatively low-excitation hadrons into other hadrons proceed by the creation of a light quark-antiquark pair with zero total angular momentum, the so called 3P0 mechanism originating from a scalar bilinear. Yet the quantum chromodynamics (QCD) interaction is perturbatively mediated by gluons of spin one, and QCD presents a chirally symmetric Lagrangian. Such scalar decay term must be spontaneously generated upon breaking chiral symmetry. We attempt to reproduce this with the help of the quark-gluon vertex in Landau gauge, whose nonperturbative structure has been reasonably elucidated in the last years, and insertions of a uniform, constant chromoelectric field. This is akin to Schwinger pair production in quantum electrodynamics (QED), and we provide a comparison with its two field-insertions diagram. We find that, the symmetry being cylindrical, the adequate quantum numbers to discuss the production are rather 3E0, 3E1, and 3110 as in diatomic molecules, and we indeed find a sizeable contribution of the third decay mechanism, which may give a rationale for the 3P0 phenomenology, as long as the momentum of the produced pair is at or below the scale of the bare or dynamically generated fermion mass. On the other hand, ultrarelativistic fermions are rather ejected with 3E1 quantum numbers. In QED, our results suggest that 3E0 dominates, whereas the constraint of producing a color singlet in QCD leads to 3110 dominance at sub-GeV momenta.  
  Address [Alkofer, Reinhard] Karl Franzens Univ Graz, Inst Phys, NAWI Graz, Univ Pl 5, A-8010 Graz, Austria  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001235870400019 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6189  
Permanent link to this record
 

 
Author Wang, D.; Mena, O. url  doi
openurl 
  Title Robust analysis of the growth of structure Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 8 Pages 083539 - 18pp  
  Keywords  
  Abstract Current cosmological tensions show that it is crucial to test the predictions from the canonical ACDM paradigm at different cosmic times. One very appealing test of structure formation in the Universe is the growth rate of structure in our universe f, usually parametrized via the growth index gamma, with f equivalent to Omega(m)(a)gamma and gamma similar or equal to 0.55 in the standard ACDM case. Recent studies have claimed a suppression of the growth of structure from a variety of cosmological observations, characterized by gamma > 0.55. By employing different self-consistent growth parametrizations schemes, we show here that gamma < 0.55, obtaining instead an enhanced growth of structure today. This preference reaches the 3 sigma significance using cosmic microwave background observations, supernova Ia and baryon acoustic oscillation measurements. The addition of cosmic microwave background lensing data relaxes such a preference to the 2 sigma level, since a larger lensing effect can always be compensated with a smaller structure growth, or, equivalently, with gamma > 0.55. We have also included the lensing amplitude AL as a free parameter in our data analysis, showing that the preference for AL > 1 still remains, except for some particular parametrizations when lensing observations are included. We also do not find any significant preference for an oscillatory dependence of AL, AL + Am sin l. To further reassess the effects of a nonstandard growth, we have computed by means of N-body simulations the dark matter density fields, the dark matter halo mass functions and the halo density profiles for different values of gamma. Future observations from the Square Kilometer Array, reducing by a factor of 3 the current errors on the gamma parameter, further confirm or refute with a strong statistical significance the deviation of the growth index from its standard value.  
  Address [Wang, Deng; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Paterna, Spain, Email: dengwang@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001224750700005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6130  
Permanent link to this record
 

 
Author Gil-Dominguez, F.; Molina, R. url  doi
openurl 
  Title Quark mass dependence of the D*s0 (2317) and D s1 (2460) resonances Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 9 Pages 096002 - 17pp  
  Keywords  
  Abstract We determine the quark mass dependence-light and heavy-of the D*s0(2317) and Ds1(2460) properties, such as, mass, coupling to D(*)K, scattering lengths and compositeness, from a global analysis I = 0 for different boosts and two pion masses. The formalism is based in the local hidden-gauge interaction of Weinberg-Tomozawa type which respects both chiral and heavy quark spin symmetries, supplemented by a term that takes into account the D(*)K coupling to a bare cs<overline> component. The isospin violating decay of the D*s0(2317) -> D+s pi 0 is also evaluated.  
  Address [Gil-Dominguez, F.; Molina, R.] Ctr Mixto Univ Valencia, Dept Fis Teor, CSIC, Parc Cientif UV,C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: fernando.gil@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001224715500005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6134  
Permanent link to this record
 

 
Author Roca, L.; Song, J.; Oset, E. url  doi
openurl 
  Title Molecular pentaquarks with hidden charm and double strangeness Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 9 Pages 094005 - 8pp  
  Keywords  
  Abstract We analyze theoretically the coupled-channel meson-baryon interaction with global flavor c<overline>cssn and c<overline>csss, where mesons are pseudoscalars or vectors, and baryons have JP = 1/2+ or 3/2+. The aim is to explore whether the nonlinear dynamics inherent in the unitarization process within coupled channels can dynamically generate double- and triple-strange pentaquark-type states (Pcss and Pcsss, respectively), for which there is no experimental evidence to date. We evaluate the s-wave scattering matrix by implementing unitarity in coupled channels, using potential kernels obtained from t-channel vector meson exchange. The required PPV and VVV vertices are obtained from Lagrangians derived through appropriate extensions of the local hidden gauge symmetry approach to the charm sector, while capitalizing on the symmetry of the spin and flavor wave function to evaluate the BBV vertex. We find four different poles in the double strange sector, some of them degenerate in spin. For the triple-strange channel, we find the meson-baryon interaction insufficient to generate a bound or resonance state through the unitary coupled-channel dynamics.  
  Address [Roca, L.] Univ Murcia, Dept Fis, E-30100 Murcia, Spain, Email: luisroca@um.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001224715500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6135  
Permanent link to this record
 

 
Author Easa, H.; Gregoire, T.; Stolarski, D.; Cosme, C. url  doi
openurl 
  Title Baryogenesis and dark matter in multiple hidden sectors Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 7 Pages 075003 - 29pp  
  Keywords  
  Abstract We explore a mechanism for producing the baryon asymmetry and dark matter in models with multiple hidden sectors that are Standard -Model -like but with varying Higgs mass parameters. If the field responsible for reheating the Standard Model and the exotic sectors carries an asymmetry, it can be converted into a baryon asymmetry using the standard sphaleron process. A hidden sector with positive Higgs mass squared can accommodate dark matter with its baryon asymmetry, and the larger abundance of dark matter relative to baryons is due to dark sphalerons being active all the way down the hidden sector QCD scale. This scenario predicts that dark matter is clustered in large dark nuclei and gives a lower bound on the effective relativistic degrees of freedom, Delta N eff greater than or similar to 0 .05 , which may be observable in the nextgeneration cosmic microwave background experiment CMB-S4.  
  Address [Easa, Hassan; Gregoire, Thomas; Stolarski, Daniel; Cosme, Catarina] Carleton Univ, Ottawa Carleton Inst Phys, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada, Email: Hassaneasa@cmail.carleton.ca;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001224349300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6129  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva