|   | 
Details
   web
Records
Author Choi, K.Y.; Lopez-Fogliani, D.E.; Muñoz, C.; Ruiz de Austri, R.
Title Gamma-ray detection from gravitino dark matter decay in the μnu SSM Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 028 - 14pp
Keywords dark matter theory; supersymmetry and cosmology; gamma ray experiments
Abstract The μnu SSM provides a solution to the mu-problem of the MSSM and explains the origin of neutrino masses by simply using right-handed neutrino superfields. Given that R-parity is broken in this model, the gravitino is a natural candidate for dark matter since its lifetime becomes much longer than the age of the Universe. We consider the implications of gravitino dark matter in the μnu SSM, analyzing in particular the prospects for detecting gamma rays from decaying gravitinos. If the gravitino explains the whole dark matter component, a gravitino mass larger than 20 GeV is disfavored by the isotropic diffuse photon background measurements. On the other hand, a gravitino with a mass range between 0.1 – 20 GeV gives rise to a signal that might be observed by the FERMI satellite. In this way important regions of the parameter space of the μnu SSM can be checked.
Address [Choi, Ki-Young; Munoz, Carlos] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain, Email: kiyoung.choi@pusan.ac.kr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes (up) ISI:000276103000006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 464
Permanent link to this record
 

 
Author Barenboim, G.; Fernandez-Martinez, E.; Mena, O.; Verde, L.
Title The dark side of curvature Type Journal Article
Year 2010 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 008 - 17pp
Keywords dark energy experiments; baryon acoustic oscillations; cosmological parameters from CMBR
Abstract Geometrical tests such as the combination of the Hubble parameter H(z) and the angular diameter distance d(A)(z) can, in principle, break the degeneracy between the dark energy equation of state parameter w(z), and the spatial curvature Omega(k) in a direct, model-independent way. In practice, constraints on these quantities achievable from realistic experiments, such as those to be provided by Baryon Acoustic Oscillation (BAO) galaxy surveys in combination with CMB data, can resolve the cosmic confusion between the dark energy equation of state parameter and curvature only statistically and within a parameterized model for w(z). Combining measurements of both H(z) and d(A)(z) up to sufficiently high redshifts z similar to 2 and employing a parameterization of the redshift evolution of the dark energy equation of state are the keys to resolve the w(z) – Omega(k) degeneracy.
Address [Barenboim, Gabriela] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: Gabriela.Barenboim@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes (up) ISI:000276103000026 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 465
Permanent link to this record
 

 
Author BABAR Collaboration (Aubert, B. et al); Azzolini, V.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D.A.; Oyanguren, A.
Title Search for B+ -> l(+)nu(l) recoiling against B- -> D(0)l(-)(nu)over-barX Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 81 Issue 5 Pages 051101 - 9pp
Keywords
Abstract We present a search for the decay B+ -> l(+)nu(l) (l = tau, mu, or e) in (458.9 +/- 5.1) x 10(6) B (B) over bar pairs recorded with the BABAR detector at the PEP-II B-factory. We search for these B decays in a sample of B+B- events where one B- meson is reconstructed as B- -> D(0)l(-)(nu) over barX. Using the method of Feldman and Cousins, we obtain B(B+ -> tau(+)nu(tau)) = (1.7 +/- 0.8 +/- 0.2) x 10(-4), which excludes zero at 2.3 sigma. We interpret the central value in the context of the standard model and find the B meson decay constant to be f(B)(2) = (62 +/- 31) x 10(3) MeV2. We find no evidence for B+ -> e(+)nu(e) and B+ -> mu(+)nu(mu) and set upper limits at the 90% C. L. B(B+ -> e(+)nu(e)) < 0.8 x 10(-5) and B(B+ -> mu(+)nu(mu)) < 1.1 x 10(-5).
Address [Aubert, B.; Karyotakis, Y.; Lees, J. P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.] Univ Savoie, Lab Annecy Le Vieux Phys Particules LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes (up) ISI:000276194200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 470
Permanent link to this record
 

 
Author Bazzocchi, F.; Cerdeño, D.G.; Muñoz, C.; Valle, J.W.F.
Title Calculable inverse-seesaw neutrino masses in supersymmetry Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 81 Issue 5 Pages 051701 - 5pp
Keywords
Abstract We provide a scenario where naturally small and calculable neutrino masses arise from a supersymmetry-breaking renormalization-group-induced vacuum expectation value. The construction consists of an extended version of the next-to-minimal supersymmetric standard model and the mechanism is illustrated for a universal choice of the soft supersymmetry-breaking parameters. The lightest supersymmetric particle can be an isosinglet scalar neutrino state, potentially viable as WIMP dark matter through its Higgs new boson coupling. The scenario leads to a plethora of new phenomenological implications at accelerators including the Large Hadron Collider.
Address [Bazzocchi, F.] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands, Email: fbazzoc@few.vu.nl
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes (up) ISI:000276194200005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 471
Permanent link to this record
 

 
Author KTeV Collaboration (Abouzaid, E. et al); Passemar, E.
Title Dispersive analysis of KLmu3 and KLe3 scalar and vector form factors using KTeV data Type Journal Article
Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 81 Issue 5 Pages 052001 - 9pp
Keywords
Abstract Using the published KTeV samples of K-L -> pi(+/-)e(-/+)nu and K-L -> pi(+/-)mu(-/+)nu decays, we perform a reanalysis of the scalar and vector form factors based on the dispersive parametrization. We obtain phase-space integrals I-K(e) = 0.15446 +/- 0.00025 and I-K(mu) = 0.10219 +/- 0.00025. For the scalar form factor parametrization, the only free parameter is the normalized form factor value at the Callan-Treiman point (C); our best-fit results in InC = 0.1915 +/- 0.0122. We also study the sensitivity of C to different parametrizations of the vector form factor. The results for the phase-space integrals and C are then used to make tests of the standard model. Finally, we compare our results with lattice QCD calculations of F-K/F-pi and f(+)(0).
Address [Abouzaid, E.; Blucher, E.; Glazov, A.; Kessler, R.; Monnier, E.; Ramberg, E. J.; Solomey, N.; Swallow, E. C.; Wah, Y. W.; Winston, R.; Worcester, E. T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA, Email: bernard@ipno.in2p3.fr
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes (up) ISI:000276194200009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 253
Permanent link to this record