|   | 
Details
   web
Records
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Valls, P.; Ruiz Vidal, J.; Sanchez Mayordomo, C.
Title Observation of the Doubly Charmed Baryon Xi(++)(cc) Type Journal Article
Year 2017 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 119 Issue 11 Pages 112001 - 10pp
Keywords
Abstract A highly significant structure is observed in the Lambda K-+(c)-pi(+)pi(+) mass spectrum, where the Lambda(+)(c) baryon is reconstructed in the decay mode pK(-)pi(+). The structure is consistent with originating from a weakly decaying particle, identified as the doubly charmed baryon Xi(++)(cc). The difference between the masses of the Xi(++)(cc) and Lambda(+)(c) states is measured to be 1334.94 +/- 0.72(stat.) +/- 0.27(syst.) MeV/c(2), and the Xi(++)(cc) mass is then determined to be 3621.40 +/- 0.72(stat.) +/- 0.27(syst.) +/- 0.14(Lambda(+)(c)) MeV/c(2), where the last uncertainty is due to the limited knowledge of the Lambda(+)(c) mass. The state is observed in a sample of proton-proton collision data collected by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.7 fb(-1), and confirmed in an additional sample of data collected at 8 TeV.
Address [Bediaga, I.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; Rodriguez, J. Molina; Dos Reis, A. C.; Rodrigues, A. B.; Guimaraes, V. Salustino; Lavra, L. Soares; Aoude, R. Tourinho Jadallah] Ctr Brasileiro Pesquisas Fisicas CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000410190800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3290
Permanent link to this record
 

 
Author Cervantes, D.; Fioresi, R.; Lledo, M.A.; Nadal, F.A.
Title Quantum Twistors Type Journal Article
Year 2016 Publication P-Adic Numbers Ultrametric Analysis and Applications Abbreviated Journal P-Adic Num.
Volume 8 Issue 1 Pages 2-30
Keywords star products; non commutative spacetime; quantum groups
Abstract We compute explicitly a star product on the Minkowski space whose Poisson bracket is quadratic. This star product corresponds to a deformation of the conformal spacetime, whose big cell is the Minkowski spacetime. The description of Minkowski space is made in the twistor formalism and the quantization follows by substituting the classical conformal group by a quantum group.
Address [Cervantes, D.] IPN, CINVESTAV, Comp Sci Dept, Mexico City, DF, Mexico, Email: dalia@computacion.cs.cinvestav.mx;
Corporate Author Thesis
Publisher Maik Nauka-Interperiodica Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2070-0466 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000410319300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3295
Permanent link to this record
 

 
Author Escrihuela, F.J.; Forero, D.V.; Miranda, O.G.; Tortola, M.; Valle, J.W.F.
Title Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study Type Journal Article
Year 2017 Publication New Journal of Physics Abbreviated Journal New J. Phys.
Volume 19 Issue Pages 093005 - 14pp
Keywords neutrino masses and mixings; neutrino oscillations; neutrino interactions
Abstract When neutrino masses arise from the exchange of neutral heavy leptons, as in most seesaw schemes, the effective lepton mixing matrix N describing neutrino propagation is non-unitary, hence neutrinos are not exactly orthonormal. New CP violation phases appear in N that could be confused with the standard phase delta(CP) characterizing the three neutrino paradigm. We study the potential of the long-baseline neutrino experiment DUNE in probing CP violation induced by the standard CP phase in the presence of non-unitarity. In order to accomplish this we develop our previous formalism, so as to take into account the neutrino interactions with the medium, important in long baseline experiments such as DUNE. We find that the expected CP sensitivity of DUNE is somewhat degraded with respect to that characterizing the standard unitary case. However the effect is weaker than might have been expected thanks mainly to the wide neutrino beam. We also investigate the sensitivity of DUNE to the parameters characterizing non-unitarity. In this case we find that there is no improvement expected with respect to the current situation, unless the near detector setup is revamped.
Address [Escrihuela, F. J.; Tortola, M.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: franesfe@alumni.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000410457100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3292
Permanent link to this record
 

 
Author Barenboim, G.; Kinney, W.H.; Park, W.I.
Title Flavor versus mass eigenstates in neutrino asymmetries: implications for cosmology Type Journal Article
Year 2017 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 77 Issue 9 Pages 590 - 7pp
Keywords
Abstract We show that, if they exist, lepton number asymmetries (L-alpha) of neutrino flavors should be distinguished from the ones (L-i) of mass eigenstates, since Big Bang Nucleosynthesis (BBN) bounds on the flavor eigenstates cannot be directly applied to the mass eigenstates. Similarly, Cosmic Microwave Background (CMB) constraints on the mass eigenstates do not directly constrain flavor asymmetries. Due to the difference of mass and flavor eigenstates, the cosmological constraint on the asymmetries of neutrino flavors can be much stronger than the conventional expectation, but they are not uniquely determined unless at least the asymmetry of the heaviest neutrino is well constrained. The cosmological constraint on L-i for a specific case is presented as an illustration.
Address [Barenboim, Gabriela; Park, Wan-Il] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: Gabriela.Barenboim@uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000410888500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3294
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Garcia Martin, L.M.; Henry, L.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Valls, P.; Sanchez Mayordomo, C.
Title Test of lepton universality with B-0 -> K*(0)l(+)l(-) decays Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 055 - 31pp
Keywords B physics; Branching fraction; Hadron-Hadron scattering (experiments); Rare decay
Abstract A test of lepton universality, performed by measuring the ratio of the branching fractions of the B-0 -> K*(0)mu(+) mu(-) and B-0 -> K*e(+)e(-) decays, R-K*0, is presented. The K*(0) meson is reconstructed in the final state K+pi(-), which is required to have an invariant mass within 100 MeV/c(2) of the known K*(892)(0) mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of about 3 fb(-1), collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The ratio is measured in two regions of the dilepton invariant mass squared, q(2), to be R-K*0 – {0.66(-0.007)(+0.11)(stat) +/- 0.03(syst) for 0.045 < q(2) < GeV2/c(4), 0.69(-0.07)(+0.11)(stat) +/- 0.05(syst) for 1.1 < q(2) < 6.0 GeV2/c(4). The corresponding 95.4% confidence level intervals are [0.52, 0.89] and [0.53, 0.94]. The results, which represent the most precise measurements of R-K*0 to date, are compatible with the Standard Model expectations at the level of 2.1-2.3 and 2.4-2.5 standard deviations in the two q(2) regions, respectively.
Address [Bediaga, I.; De Miranda, J. M.; Gomes, A.; Massafferri, A.; Molina Rodriguez, J.; dos Reis, A. C.; Rodrigues, A. B.; Salustino Guimaraes, V.; Soares Lavra, I.; Tourinho Jadallah Aoude, R.] CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000410888900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3302
Permanent link to this record