|   | 
Details
   web
Records
Author Wilson, J.N. et al; Algora, A.
Title Angular momentum generation in nuclear fission Type Journal Article
Year 2021 Publication Nature Abbreviated Journal Nature
Volume 590 Issue 7847 Pages 566-570
Keywords
Abstract When a heavy atomic nucleus splits (fission), the resulting fragments are observed to emerge spinning(1); this phenomenon has been a mystery in nuclear physics for over 40 years(2,3). The internal generation of typically six or seven units of angular momentum in each fragment is particularly puzzling for systems that start with zero, or almost zero, spin. There are currently no experimental observations that enable decisive discrimination between the many competing theories for the mechanism that generates the angular momentum(4-12). Nevertheless, the consensus is that excitation of collective vibrational modes generates the intrinsic spin before the nucleus splits (pre-scission). Here we show that there is no significant correlation between the spins of the fragment partners, which leads us to conclude that angular momentum in fission is actually generated after the nucleus splits (post-scission). We present comprehensive data showing that the average spin is strongly mass-dependent, varying in saw-tooth distributions. We observe no notable dependence of fragment spin on the mass or charge of the partner nucleus, confirming the uncorrelated post-scission nature of the spin mechanism. To explain these observations, we propose that the collective motion of nucleons in the ruptured neck of the fissioning system generates two independent torques, analogous to the snapping of an elastic band. A parameterization based on occupation of angular momentum states according to statistical theory describes the full range of experimental data well. This insight into the role of spin in nuclear fission is not only important for the fundamental understanding and theoretical description of fission, but also has consequences for the gamma-ray heating problem in nuclear reactors(13,14), for the study of the structure of neutron-rich isotopes(15,16), and for the synthesis and stability of super-heavy elements(17,18). gamma-ray spectroscopy experiments on the origin of spin in the products of nuclear fission of spin-zero nuclei suggest that the fission fragments acquire their spin after scission, rather than before.
Address [Wilson, J. N.; Thisse, D.; Lebois, M.; Jovancevic, N.; Adsley, P.; Babo, M.; Chakma, R.; Delafosse, C.; Haefner, G.; Hauschild, K.; Ibrahim, F.; Ljungvall, J.; Lopez-Martens, A.; Lozeva, R.; Matea, I; Nemer, J.; Popovitch, Y.; Qi, L.; Tocabens, G.; Verney, D.] Univ Paris Saclay, IJC Lab, CNRS, IN2P3, Orsay, France, Email: jonathan.wilson@ijclab.in2p3.fr
Corporate Author Thesis
Publisher Nature Research Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000621583600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4717
Permanent link to this record
 

 
Author Dombos, A.C. et al; Algora, A.
Title Total absorption spectroscopy of the beta decay of Zr-101,102 and Tc-109 Type Journal Article
Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 103 Issue 2 Pages 025810 - 20pp
Keywords
Abstract The beta decay of Zr-101,Zr-102 and Tc-109 was studied using the technique of total absorption spectroscopy. The experiment was performed at the National Superconducting Cyclotron Laboratory using the Summing NaI(Tl) (SuN) detector in the first-ever application of total absorption spectroscopy with a fast beam produced via projectile fragmentation. The beta-decay feeding intensity and Gamow-Teller transition strength distributions were extracted for these three decays. The extracted distributions were compared to three different quasiparticle random-phase approximation (QRPA) models based on different mean-field potentials. A comparison with calculations from one of the QRPA models was performed to learn about the ground-state shape of the parent nucleus. For Zr-101 and Zr-102, calculations assuming a pure shape configuration (oblate or prolate) were not able to reproduce the extracted distributions. These results may indicate that some type of mixture between oblate and prolate shapes is necessary to reproduce the extracted distributions. For Tc-109, a comparison of the extracted distributions with QRPA calculations suggests a dominant oblate configuration. The other two QRPA models are commonly used to provide beta-decay properties in r-process network calculations. This work shows the importance of making comparisons between the experimental and theoretical beta-decay distributions, rather than just half-lives and beta-delayed neutron emission probabilities, as close to the r-process path as possible.
Address [Dombos, A. C.; Spyrou, A.; Naqvi, F.; Quinn, S. J.; Liddick, S. N.; Baumann, T.; Crider, B. P.; Ginter, T.; Lyons, S.; Ong, W-J; Palmisano, A.; Pereira, J.; Prokop, C. J.; Smith, M. K.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA, Email: adombos@nd.edu
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000621593100006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4757
Permanent link to this record
 

 
Author Han, C.; Lopez-Ibañez, M.L.; Melis, A.; Vives, O.; Yang, J.M.
Title Anomaly-free leptophilic axionlike particle and its flavor violating tests Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 103 Issue 3 Pages 035028 - 7pp
Keywords
Abstract Motivated by the recent Xenon1T result, we study a leptophilic flavor-dependent anomaly-free axionlike particle (ALP) and its effects on charged-lepton flavor violation. We present two representative models. The first one considers that the ALP origins from the flavon that generates the charged-lepton masses. The second model assumes a larger flavor symmetry such that more general mixings in the charged-lepton are possible, while maintaining flavor-dependent ALP couplings. We find that a keV ALP explaining the Xenon1T result is still viable for lepton flavor violation and stellar cooling astrophysical limits. On the other hand, if the Xenon1T result is confirmed, future charged-lepton flavor violation measurements can be complementary to probe such a possibility.
Address [Han, C.] Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Guangdong, Peoples R China, Email: hanchch@mail.sysu.edu.cn;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000621593200009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4739
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Henry, L.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Remon Alepuz, C.; Ruiz Vidal, J.
Title First Observation of the Decay B-s(0) -> K-mu(+)nu(mu) and a Measurement of vertical bar V-ub vertical bar/vertical bar V-cb vertical bar Type Journal Article
Year 2021 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 126 Issue 8 Pages 081804 - 11pp
Keywords
Abstract The first observation of the suppressed semileptonic B-s(0) -> K-mu(+)nu(mu) decay is reported. Using a data sample recorded in pp collisions in 2012 with the LHCb detector, corresponding to an integrated luminosity of 2 fb(-1), the branching fraction B(B-s(0) -> K-mu(+)nu(mu)) is measured to be [1.06 +/- 0.05(stat) +/- 0.08(syst)] x 10(-4), where the first uncertainty is statistical and the second one represents the combined systematic uncertainties. The decay B-s(0) -> D-s(-)mu(+)nu(mu), where D-s(-) is reconstructed in the final state K+K-pi(-), is used as a normalization channel to minimize the experimental systematic uncertainty. Theoretical calculations on the form factors of the B-s(0) -> K- and B-s(0) -> D-s(-) transitions are employed to determine the ratio of the Cabibbo-Kobayashi-Maskawa matrix elements vertical bar V-ub vertical bar/vertical bar V-cb vertical bar at low and high B-s(0) -> K- momentum transfer.
Address [Leite, J. Baptista; Bediaga, I; Torres, M. Cruz; De Miranda, J. M.; dos Reis, A. C.; Gomes, A.; Massafferri, A.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000621595400003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4719
Permanent link to this record
 

 
Author Watanabe, H.; Watanabe, Y.X.; Hirayama, Y.; Andreyev, A.N.; Hashimoto, T.; Kondev, F.G.; Lane, G.J.; Litvinov, Y.A.; Liu, J.J.; Miyatake, H.; Moon, J.Y.; Morales, A.I.; Mukai, M.; Nishimura, S.; Niwase, T.; Rosenbusch, M.; Schury, P.; Shi, Y.; Wada, M.; Walker, P.M.
Title Beta decay of the axially asymmetric ground state of Re-192 Type Journal Article
Year 2021 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 814 Issue Pages 136088 - 6pp
Keywords Re-192; beta decay; Axial asymmetry; Shape transition
Abstract The beta decay of Re-192(75)117, which lies near the boundary between the regions of predicted prolate and oblate deformations, has been investigated using the KEK Isotope Separation System (KISS) in RIKEN Nishina Center. This is the first case in which a low-energy beam of rhenium isotope has been successfully extracted from an argon gas-stopping cell using a laser-ionization technique, following production via multi-nucleon transfer between heavy ions. The ground state of Re-192 has been assigned J(pi) = (0(-)) based on the observed beta feedings and deduced logf t values towards the 0(+) and 2(+) states in Os-192, which is known as a typical gamma-soft nucleus. The shape transition from axial symmetry to axial asymmetry in the Re isotopes is discussed from the viewpoint of single-particle structure using the nuclear Skyrme-Hartree-Fock model.
Address [Watanabe, H.] Beihang Univ, Sch Phys, Beijing 100191, Peoples R China, Email: hiroshi@ribf.riken.jp
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes (up) WOS:000621722300008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4747
Permanent link to this record