toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gessner, M.; Smerzi, A. url  doi
openurl 
  Title Hierarchies of Frequentist Bounds for Quantum Metrology: From Cramer-Rao to Barankin Type Journal Article
  Year 2023 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 130 Issue 26 Pages 260801 - 6pp  
  Keywords  
  Abstract We derive lower bounds on the variance of estimators in quantum metrology by choosing test observables that define constraints on the unbiasedness of the estimator. The quantum bounds are obtained by analytical optimization over all possible quantum measurements and estimators that satisfy the given constraints. We obtain hierarchies of increasingly tight bounds that include the quantum Cramer-Rao bound at the lowest order. In the opposite limit, the quantum Barankin bound is the variance of the locally best unbiased estimator in quantum metrology. Our results reveal generalizations of the quantum Fisher information that are able to avoid regularity conditions and identify threshold behavior in quantum measurements with mixed states, caused by finite data.  
  Address [Gessner, Manuel] Univ Valencia, Dept Fis Teor, IFIC, CSIC, Carrer Dr Moliner 50, Valencia 46100, Spain, Email: manuel.gessner@uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001140164100003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5902  
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanderswood, I. url  doi
openurl 
  Title Observation of a J/ψΛ Resonance Consistent with a Strange Pentaquark Candidate in B- → J/ψΛ(p)over-bar Decays Type Journal Article
  Year 2023 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 131 Issue 3 Pages 031901 - 11pp  
  Keywords  
  Abstract An amplitude analysis of B- -> J/psi Lambda(p) over bar decays is performed using 4400 signal candidates selected on a data sample of pp collisions recorded at center-of-mass energies of 7, 8, and 13 TeV with the LHCb detector, corresponding to an integrated luminosity of 9 fb(-1). A narrow resonance in the J/psi Lambda system, consistent with a pentaquark candidate with strangeness, is observed with high significance. The mass and the width of this new state are measured to be 4338.2 +/- 0.7 +/- 0.4 MeV and 7.0 +/- 1.2 +/- 1.3 MeV, where the first uncertainty is statistical and the second systematic. The spin is determined to be 1/2 and negative parity is preferred. Because of the small Q-value of the reaction, the most precise single measurement of the B- mass to date, 5279.44 +/- 0.05 +/- 0.07 MeV, is obtained.  
  Address [de Souza Leite, J. Baptista; Bediaga, I. B.; Cruz Torres, M.; Da Graca, U. De Freitas Carneiro; De Miranda, J. M.; dos Reis, A. C.; Falcao, L. N.; Gomes, A.; Massafferri, A.; Torres Machado, D.] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001138758100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5941  
Permanent link to this record
 

 
Author Alvarado, F.; An, D.; Alvarez-Ruso, L.; Leupold, S. url  doi
openurl 
  Title Light quark mass dependence of nucleon electromagnetic form factors in dispersively modified chiral perturbation theory Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue 11 Pages 114021 - 23pp  
  Keywords  
  Abstract The nucleon isovector electromagnetic form factors are calculated up to next-to-next-to-leading order by combining relativistic chiral perturbation theory (ChPT) of pion, nucleon, and Delta o1232 thorn with dispersion theory. We specifically address the light-quark mass dependence of the form factors, achieving a good description of recent lattice QCD results over a range of Q2 less than or similar to 0.6 GeV2 and M pi less than or similar to 350 MeV. For the Dirac form factor, the combination of ChPT and dispersion theory outperforms the pure dispersive and pure ChPT descriptions. For the Pauli form factor, the combined calculation leads to results comparable to the purely dispersive ones. The anomalous magnetic moment and the Dirac and Pauli radii are extracted.  
  Address [Alvarado, Fernando; Alvarez-Ruso, Luis] CSIC, Inst Fis Corpuscular IF, E-46980 Paterna, Valencia, Spain, Email: Fernando.Alvarado@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001138524400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5906  
Permanent link to this record
 

 
Author Oliver, S.; Gimenez-Alventosa, V.; Berumen, F.; Gimenez, V.; Beaulieu, L.; Ballester, F.; Vijande, J. doi  openurl
  Title Benchmark of the PenRed Monte Carlo framework for HDR brachytherapy Type Journal Article
  Year 2023 Publication Zeitschrift für Medizinische Physik Abbreviated Journal Z. Med. Phys.  
  Volume 33 Issue 4 Pages 511-528  
  Keywords Monte Carlo; PenRed; Brachytherapy; DICOM; Medical physics  
  Abstract Purpose: The purpose of this study is to validate the PenRed Monte Carlo framework for clinical applications in brachytherapy. PenRed is a C++ version of Penelope Monte Carlo code with additional tallies and utilities. Methods and materials: Six benchmarking scenarios are explored to validate the use of PenRed and its improved bachytherapy-oriented capabilities for HDR brachytherapy. A new tally allowing the evaluation of collisional kerma for any material using the track length kerma estimator and the possibility to obtain the seed positions, weights and directions processing directly the DICOM file are now implemented in the PenRed distribution. The four non-clinical test cases developed by the Joint AAPM-ESTRO-ABG-ABS WG-DCAB were evaluated by comparing local and global absorbed dose differences with respect to established reference datasets. A prostate and a palliative lung cases, were also studied. For them, absorbed dose ratios, global absorbed dose differences, and cumulative dose-volume histograms were obtained and discussed. Results: The air-kerma strength and the dose rate constant corresponding to the two sources agree with the reference datatests within 0.3% (Sk) and 0.1% (K). With respect to the first three WG-DCAB test cases, more than 99.8% of the voxels present local (global) differences within +/- 1%(+/- 0.1%) of the reference datasets. For test Case 4 reference dataset, more than 94.9%(97.5%) of voxels show an agreement within +/- 1%(+/- 0.1%), better than similar benchmarking calculations in the literature. The track length kerma estimator scorer implemented increases the numerical efficiency of brachytherapy calculations two orders of magnitude, while the specific brachytherapy source allows the user to avoid the use of error-prone intermediate steps to translate the DICOM information into the simulation. In both clinical cases, only minor absorbed dose differences arise in the low-dose isodoses. 99.8% and 100% of the voxels have a global absorbed dose difference ratio within +/- 0.2%for the prostate and lung cases, respectively. The role played by the different segmentation and composition material in the bone structures was discussed, obtaining negligible absorbed dose differ-ences. Dose-volume histograms were in agreement with the reference data.Conclusions: PenRed incorporates new tallies and utilities and has been validated for its use for detailed and precise high-dose-rate brachytherapy simulations.  
  Address [Oliver, S.] Univ Politecn Valencia, Inst Segur Ind, Radiofis & Medioambiental ISIRYM, Camide Vera s n, Valencia 46022, Spain, Email: sanolgi@upvnet.upv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0939-3889 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001137118400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5885  
Permanent link to this record
 

 
Author Karan, A.; Sadhukhan, S.; Valle, J.W.F. url  doi
openurl 
  Title Phenomenological profile of scotogenic fermionic dark matter Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 185 - 34pp  
  Keywords Particle Nature of Dark Matter; Models for Dark Matter; Neutrino Interactions  
  Abstract We consider the possibility that neutrino masses arise from the exchange of dark matter states. We examine in detail the phenomenology of fermionic dark matter in the singlet-triplet scotogenic model. We explore the case of singlet-like fermionic dark matter, taking into account all coannihilation effects relevant for determining its relic abundance, such as fermion-fermion and scalar-fermion coannihilation. Although this in principle allows for dark matter below 60 GeV, the latter is in conflict with charged lepton flavour violation (cLFV) and/or collider physics constraints. We examine the prospects for direct dark matter detection in upcoming experiments up to 10 TeV. Fermion-scalar coannihilation is needed to obtain viable fermionic dark matter in the 60-100 GeV mass range. Fermion-fermion and fermion-scalar coannihilation play complementary roles in different parameter regions above 100 GeV.  
  Address [Karan, Anirban; Sadhukhan, Soumya; Valle, Jose W. F.] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cientif Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: kanirban@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:001135721300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5904  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva