|   | 
Details
   web
Records
Author Aebischer, J. et al; Vicente, A.
Title Computing tools for effective field theories Type Journal Article
Year 2024 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 84 Issue 2 Pages 170 - 59pp
Keywords
Abstract In recent years, theoretical and phenomenological studies with effective field theories have become a trending and prolific line of research in the field of high-energy physics. In order to discuss present and future prospects concerning automated tools in this field, the SMEFT-Tools 2022 workshop was held at the University of Zurich from 14th-16th September 2022. The current document collects and summarizes the content of this workshop.
Address [Aebischer, Jason; Allwicher, Lukas; Stoffer, Peter] Univ Zurich, Phys Inst, CH-8057 Zurich, Switzerland, Email: matteo.fael@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes (down) WOS:001189739500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6052
Permanent link to this record
 

 
Author Fanchiotti, H.; Garcia Canal, C.A.; Vento, V.
Title Energy loss of monopolium in a medium Type Journal Article
Year 2023 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus
Volume 138 Issue 9 Pages 850 - 11pp
Keywords
Abstract We study the energy loss of excited monopolium in an atomic medium. We perform a classical calculation in line with a similar calculation performed for charged particles which leads in the non-relativistic limit to the Bethe-Bloch formula except for the density dependence of the medium, which we do not consider in this paper. Our result shows that for maximally deformed Rydberg states, the ionization of monopolium in a light atomic medium is similar to that of light ions.
Address [Fanchiotti, Huner; Garcia Canal, Carlos A.] Univ La Plata, IFLP CONICET, CC 67, RA-1900 La Plata, Argentina, Email: vicente.vento@uv.es
Corporate Author Thesis
Publisher Springer Heidelberg Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-5444 ISBN Medium
Area Expedition Conference
Notes (down) WOS:001189275500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6001
Permanent link to this record
 

 
Author Domcke, V.; Garcia-Cely, C.; Lee, S.M.; Rodd, N.L.
Title Symmetries and selection rules: optimising axion haloscopes for Gravitational Wave searches Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 128 - 51pp
Keywords Axions and ALPs; Early Universe Particle Physics
Abstract In the presence of electromagnetic fields, both axions and gravitational waves (GWs) induce oscillating magnetic fields: a potentially detectable fingerprint of their presence. We demonstrate that the response is largely dictated by the symmetries of the instruments used to search for it. Focussing on low mass axion haloscopes, we derive selection rules that determine the parametric sensitivity of different detector geometries to axions and GWs, and which further reveal how to optimise the experimental geometry to maximise both signals. The formalism allows us to forecast the optimal sensitivity to GWs in the range of 100 kHz to 100 MHz for instruments such as ABRACADABRA, BASE, ADMX SLIC, SHAFT, WISPLC, and DMRadio.
Address [Domcke, Valerie; Lee, Sung Mook; Rodd, Nicholas L.] CERN, Theoret Phys Dept, 1 Esplanade Particules, CH-1211 Geneva 23, Switzerland, Email: valerie.domcke@cern.ch;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes (down) WOS:001189228700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6049
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Jaimes Elles, S.J.; Jashal, B.K.; Martinez-Vidal, F.; Oyanguren, A.; Rebollo De Miguel, M.; Remon Alepuz, C.; Ruiz Vidal, J.; Sanderswood, I.; Zhuo, J.
Title Observation of the B+ → Jψη'K+ decay Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 174 - 27pp
Keywords B Physics; Branching fraction; Charm Physics; Hadron-Hadron Scattering
Abstract The B+ -> J psi eta'K+ decay is observed for the first time using proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7, 8, and 13TeV, corresponding to a total integrated luminosity of 9 fb(-1). The branching fraction of this decay is measured relative to the known branching fraction of the B+ -> psi(2S)K+ decay and found to be B(B+ -> J psi eta'K+)/B(B+ -> psi(2S)K+) = (4.91 +/- 0.47 +/- 0.29 +/- 0.07) x 10(-2), where the first uncertainty is statistical, the second is systematic and the third is related to external branching fractions. A first look at the J/psi eta' mass distribution is performed and no signal of intermediate resonances is observed.
Address [de Souza Leite, J. Baptista; Bediaga, I. B.; Torres, M. Cruz; Carneiro Da Graca, U. De Freitas; De Miranda, J. M.; dos Reis, A. C.; Falcao, L. N.; Gomes, A.; Massafferri, A.; Santoro, L.; Machado, D. Torres] Ctr Brasileiro Pesquisas Fis CBPF, Rio De Janeiro, Brazil, Email: Ivan.Belyaev@cern.ch
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes (down) WOS:001188365600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6025
Permanent link to this record
 

 
Author Ghoshal, A.; Gouttenoire, Y.; Heurtier, L.; Simakachorn, P.
Title Primordial black hole archaeology with gravitational waves from cosmic strings Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 196 - 43pp
Keywords Cosmology of Theories BSM; Early Universe Particle Physics; Phase Transitions in the Early Universe; Specific BSM Phenomenology
Abstract Light primordial black holes (PBHs) with masses smaller than 10(9) g (10(-24) M-circle dot) evaporate before the onset of Big-Bang nucleosynthesis, rendering their detection rather challenging. If efficiently produced, they may have dominated the universe energy density. We study how such an early matter-dominated era can be probed successfully using gravitational waves (GW) emitted by local and global cosmic strings. While previous studies showed that a matter era generates a single-step suppression of the GW spectrum, we instead find a double-step suppression for local-string GW whose spectral shape provides information on the duration of the matter era. The presence of the two steps in the GW spectrum originates from GW being produced through two events separated in time: loop formation and loop decay, taking place either before or after the matter era. The second step – called the knee – is a novel feature which is universal to any early matter-dominated era and is not only specific to PBHs. Detecting GWs from cosmic strings with LISA, ET, or BBO would set constraints on PBHs with masses between 10(6) and 10(9) g for local strings with tension G μ= 10(-11), and PBHs masses between 10(4) and 10(9) g for global strings with symmetry-breaking scale eta = 10(15) GeV. Effects from the spin of PBHs are discussed.
Address [Ghoshal, Anish] Univ Warsaw, Inst Theoret Phys, Fac Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland, Email: anish.ghoshal@fuw.edu.pl;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes (down) WOS:001188227600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5994
Permanent link to this record