toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Agullo, I.; Navarro-Salas, J.; Olmo, G.J.; Parker, L. url  doi
openurl 
  Title Acceleration radiation, transition probabilities and trans-Planckian physics Type Journal Article
  Year 2010 Publication New Journal of Physics Abbreviated Journal New J. Phys.  
  Volume 12 Issue Pages 095017 - 18pp  
  Keywords  
  Abstract An important question in the derivation of the acceleration radiation, which also arises in Hawking's derivation of black hole radiance, is the need to invoke trans-Planckian physics in describing the creation of quanta. We point out that this issue can be further clarified by reconsidering the analysis in terms of particle detectors, transition probabilities and local two-point functions. By writing down separate expressions for the spontaneous-and induced-transition probabilities of a uniformly accelerated detector, we show that the bulk of the effect comes from the natural (non-trans-Planckian) scale of the problem, which largely diminishes the importance of the trans-Planckian sector. This is so, at least, when trans-Planckian physics is defined in a Lorentz-invariant way. This analysis also suggests how one can define and estimate the role of trans-Planckian physics in the Hawking effect itself.  
  Address [Agullo, Ivan; Olmo, Gonzalo J.; Parker, Leonard] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA, Email: ivan.agullo@uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Medium  
  Area Expedition Conference  
  Notes (up) ISI:000284766400006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 318  
Permanent link to this record
 

 
Author Olmo, G.J.; Sanchis-Alepuz, H. url  doi
openurl 
  Title Hamiltonian formulation of Palatini f(R) theories a la Brans-Dicke theory Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 10 Pages 104036 - 11pp  
  Keywords  
  Abstract We study the Hamiltonian formulation of f(R) theories of gravity both in metric and in Palatini formalism using their classical equivalence with Brans-Dicke theories with a nontrivial potential. The Palatini case, which corresponds to the omega = -3/2 Brans-Dicke theory, requires special attention because of new constraints associated with the scalar field, which is nondynamical. We derive, compare, and discuss the constraints and evolution equations for the omega = -3/2 and omega not equal -3/2 cases. Based on the properties of the constraint and evolution equations, we find that, contrary to certain claims in the literature, the Cauchy problem for the omega = -3/2 case is well formulated and there is no reason to believe that it is not well posed in general.  
  Address [Olmo, Gonzalo J.] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes (up) ISI:000290761400007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 631  
Permanent link to this record
 

 
Author Olmo, G.J. url  doi
openurl 
  Title Palatini approach to modified gravity: f(R) theories and beyond Type Journal Article
  Year 2011 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D  
  Volume 20 Issue 4 Pages 413-462  
  Keywords Palatini formalism; modified gravity; cosmic speed-up; dark energy; dark matter; MOND; quantum gravity phenomenology; Hamiltonian formulation; stellar structure; Cauchy problem; solar system tests  
  Abstract We review the recent literature on modified theories of gravity in the Palatini approach. After discussing the motivations that lead to consider alternatives to Einstein's theory and to treat the metric and the connection as independent objects, we review several topics that have been recently studied within this framework. In particular, we provide an in-depth analysis of the cosmic speed-up problem, laboratory and solar system tests, the structure of stellar objects, the Cauchy problem, and bouncing cosmologies. We also discuss the importance of going beyond the f(R) models to capture other phenomenological aspects related with dark matter/energy and quantum gravity.  
  Address [Olmo, Gonzalo J.] Univ Valencia CSIC, Dept Fis Teor, Valencia, Spain, Email: gonzalo.olmo@uv.es  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0218-2718 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000290228200001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 961  
Permanent link to this record
 

 
Author Olmo, G.J. url  doi
openurl 
  Title Palatini actions and quantum gravity phenomenology Type Journal Article
  Year 2011 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages 018 - 15pp  
  Keywords quantum gravity phenomenology; cosmic singularity  
  Abstract We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropic cosmologies of this model also avoid the big bang singularity by means of a big bounce.  
  Address [Olmo, GJ] Univ Valencia, Dept Fis Teor, E-46100 Valencia, Spain, Email: gonzalo.olmo@csic.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000296767600018 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 816  
Permanent link to this record
 

 
Author Agullo, I.; Navarro-Salas, J.; Olmo, G.J.; Parker, L. url  doi
openurl 
  Title Remarks on the renormalization of primordial cosmological perturbations Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 84 Issue 10 Pages 107304 - 5pp  
  Keywords  
  Abstract We briefly review the need to perform renormalization of inflationary perturbations to properly work out the physical power spectra. We also summarize the basis of (momentum-space) renormalization in curved spacetime and address several misconceptions found in recent literature on this subject.  
  Address [Agullo, I] Penn State Univ, Dept Phys, Inst Gravitat & Cosmos, University Pk, PA 16802 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes (up) WOS:000297126700004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 811  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva