toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Feijoo, A.; Wang, W.F.; Xiao, C.W.; Wu, J.J.; Oset, E.; Nieves, J.; Zou, B.S. url  doi
openurl 
  Title A new look at the P-cs states from a molecular perspective Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 839 Issue Pages 137760 - 7pp  
  Keywords  
  Abstract We have a look at the P-cs states generated from the interaction of (D) over bar(*)Xi(c)('*) coupled channels. We consider the blocks of pseudoscalar-baryon (1/2(+) , 3/2(+)) and vector-baryon (1/2(+), 3/2(+)), and find 10 resonant states coupling mostly to (D) over bar Xi(c), <(D)*over bar>*Xi(c), (D) over bar Xi(c)' <(DA novel aspect of the work is the realization that the <(Dover bar>Xi(c), (Dover bar>(s) Lambda(c) or (Dover bar>*Xi(c), D-s*Lambda(c) channels, with a strong transition potential, collaborate to produce a larger attraction than the corresponding states <(Dover bar>Xi(c), <(Dover bar>Lambda(c) or (D) over bar*Xi(c), (D) over bar*Lambda(c) appearing in the generation of the strangenessless P-c states, since in the latter case the transition potential between those channels is zero. The extra attraction obtained in the (D) over bar Xi(c), (D) over bar* Xi(c) pairs preclude the association of the P-cs(4338) state coupling mostly to (D) over bar*Xi(c) while the P-cs(4459) is associated to the state found that couples mostly to (D) over bar Xi(c)'. Four more states appear, like in other molecular pictures, and some of the states are degenerate in spin. Counting different spin states we find 10states, which we hope can be observed in the near future.  
  Address [Feijoo, Albert; Wang, Wen-Fei; Oset, Eulogio; Nieves, Juan] Ctr Mixto Univ Valencia, CSIC Inst Invest Paterna, Dept Fis Teonca, Aptdo 22085, Valencia 46071, Spain, Email: edfeijoo@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000991801200001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5535  
Permanent link to this record
 

 
Author Ji, T.; Dong, X.K.; Albaladejo, M.; Du, M.L.; Guo, F.K.; Nieves, J.; Zou, B.S. url  doi
openurl 
  Title Understanding the 0(++) and 2(++) charmonium(-like) states near 3.9 GeV Type Journal Article
  Year 2023 Publication Science Bulletin Abbreviated Journal Sci. Bull.  
  Volume 68 Issue 7 Pages 688-697  
  Keywords Charmonium(-like) states; Hadronic molecules; Heavy quark spin symmetry; Exotic hadrons; Hadron-hadron interactions  
  Abstract We propose that the X(3915) observed in the J/psi x channel is the same state as the chi(c2)(3930), and the X(3960), observed in the Ds+Ds- channel, is an S-wave Ds+Ds- hadronic molecule. In addition, the J(PC) = 0(++) component in the B+ -> D+D-K+ assigned to the X(3915) in the current Review of Particle Physics has the same origin as the X(3960), which has a mass around 3.94 GeV. To check the proposal, the available data in the D (D) over bar and Ds+Ds- channels from both B decays and gamma gamma fusion reaction are analyzed considering both the D (D) over bar -D-s(D) over bar (s)-D*(D) over bar*-D-s*(D) over bar (s)* coupled channels with 0(++) and a 2(++) state introduced additionally. It is found that all the data in different processes can be simultaneously well reproduced, and the coupled-channel dynamics produce four hidden-charm scalar molecular states with masses around 3.73, 3.94, 3.99 and 4.23 GeV, respectively. The results may deepen our understanding of the spectrum of charmonia as well as of the interactions between charmed hadrons.  
  Address [Ji, Teng; Dong, Xiang-Kun; Guo, Feng-Kun; Zou, Bing-Song] Inst Theoret Phys, Chinese Acad Sci, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China, Email: jiteng@itp.ac.cn;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-9273 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000985290600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5520  
Permanent link to this record
 

 
Author Abreu, L.M.; Albaladejo, M.; Feijoo, A.; Oset, E.; Nieves, J. url  doi
openurl 
  Title Shedding light on the X(3930) and X(3960) states with the B-> K- J/psi omega reaction Type Journal Article
  Year 2023 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C  
  Volume 83 Issue 4 Pages 309 - 11pp  
  Keywords  
  Abstract We have studied the contribution of the state X(3930), coming from the interaction of the D ($) over bar and D-s(+) D ($) over bar (s) channels, to the B- -> K- J/psi omega decay. The purpose of this work is to offer a complementary tool to see if the X(3930) state observed in the D+ D- channel is the same or not as the X(3960) resonance claimed by the LHCb Collaboration from a peak in the D-s(+) D s mass distribution around threshold. We present results for what we expect in the J/psi omega mass distribution in the B- -> K- J/psi omega decay and conclude that a clear signal should be seen around 3930 MeV. At the same time, finding no extra resonance signal at 3960 MeV would be a clear indication that there is not a new state at 3960 MeV, supporting the hypothesis that the near-threshold peaking structure peak in the D-s(+) D-s(-) mass distribution is only a manifestation of a resonance below threshold.  
  Address [Abreu, L. M.] Univ Fed Bahia, Inst Fis, Campus Univ Ondina, BR-40170115 Barreiras, BA, Brazil, Email: luciano.abreu@ufba.br;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6044 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000977984500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5531  
Permanent link to this record
 

 
Author Du, M.L.; Hernandez, E.; Nieves, J. url  doi
openurl 
  Title Is the Lambda(c)(2625)(+) the heavy quark spin symmetry partner of the Lambda(c)(2595)(+) ? Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 11 Pages 114020 - 22pp  
  Keywords  
  Abstract We use a O(alpha(s). Lambda(QCD)/m(c)) heavy quark effective theory scheme, where only O(Lambda(QCD)/mb) corrections are neglected, to study the matrix elements of the scalar, pseudoscalar, vector, axial-vector and tensor currents between the Lambda(b) ground state and the odd parity charm Lambda(c)(2595)(+) and Lambda(c)(2625)(+) resonances. We show that in the near-zero recoil regime, the scheme describes reasonably well, taking into account uncertainties, the results for the 24 form factors obtained in lattice QCD (LQCD) just in terms of only four Isgur-Wise (IW) functions. We also find some support for the possibility that the Lambda(c)(2595)(+) and Lambda(c)(2625)(+) resonances might form a heavy quark spin symmetry (HQSS) doublet. However, we argue that the available LQCD description of these two resonances is not accurate enough to disentangle the possible effects of the Sigma(c)pi and Sigma(c)*pi thresholds, located only a few MeV above their position, and that it cannot be ruled out that these states are not HQSS partners. Finally, we study the ratio d Gamma/[Lambda(b) -> Lambda(c,1/2)-*l (v) over bar (l)]/dq(2)/d Gamma/[Lambda(b) -> Lambda(c,3/2)-*l (v) over bar (l)]/dq(2) of the Standard Model differential semileptonic decay widths, with q the four-momentum transferred between the initial and final hadrons. We provide a natural explanation for the existence of large deviations, near the zero recoil, of this ratio from 1=2 (value predicted in the infinite heavy quark mass limit, assuming that the Lambda(c,1/2)- and Lambda(c,3/2)- are the two members of a HQSS doublet) based on S-wave contributions to the Lambda(b) -> Lambda(c,1/2)- decay amplitude driven by a subleading IW function.  
  Address [Du, Meng-Lin; Nieves, Juan] Inst Fis Corpuscular Ctr Mixto CSIC UV, Inst Invest Paterna, Apartado 22085, Valencia 46071, Spain, Email: du.ml@uestc.edu.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000905088600004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5454  
Permanent link to this record
 

 
Author Ji, T.; Dong, X.K.; Albaladejo, M.; Du, M.L.; Guo, F.K.; Nieves, J. url  doi
openurl 
  Title Establishing the heavy quark spin and light flavor molecular multiplets of the X(3872), Z(c)(3900), and X(3960) br Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 106 Issue 9 Pages 094002 - 13pp  
  Keywords  
  Abstract Recently, the LHCb Collaboration reported a near-threshold enhancement X(3960) in the D+sD-s invariant mass distribution. We show that the data can be well described by either a bound or a virtual state below the D+sD-s threshold. The mass given by the pole position is (3928 +/- 3) MeV. Using this mass and the existing information on the X(3872) and Zc(3900) resonances, a complete spectrum of the S-wave hadronic molecules formed by a pair of ground state charmed and anticharmed mesons is established. Thus, pole positions of the partners of the X(3872) , Zc(3900) , and the newly observed D+sD-s state are predicted. Calculations have been carried out at the leading order of nonrelativistic effective field theory and considering both heavy quark spin and light flavor SU(3) symmetries, though conservative errors from the breaking of these symmetries are provided.  
  Address [Ji, Teng; Dong, Xiang-Kun; Guo, Feng-Kun] Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China, Email: jiteng@itp.ac.cn;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes (down) WOS:000886709000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5428  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva