|   | 
Details
   web
Records
Author Renner, J.; Cervera-Villanueva, A.; Hernando, J.A.; Izmaylov, A.; Monrabal, F.; Muñoz, J.; Nygren, D.; Gomez-Cadenas, J.J.
Title Improved background rejection in neutrinoless double beta decay experiments using a magnetic field in a high pressure xenon TPC Type Journal Article
Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 10 Issue Pages P12020 - 19pp
Keywords Pattern recognition, cluster finding, calibration and fitting methods; Double-beta decay detectors; Time projection chambers; Particle tracking detectors (Gaseous detectors)
Abstract We demonstrate that the application of an external magnetic field could lead to an improved background rejection in neutrinoless double-beta (0 nu beta beta) decay experiments using a high-pressure xenon (HPXe) TPC. HPXe chambers are capable of imaging electron tracks, a feature that enhances the separation between signal events (the two electrons emitted in the 0 nu beta beta decay of Xe-136) and background events, arising chiefly from single electrons of kinetic energy compatible with the end-point of the 0 nu beta beta decay (Q(beta beta)). Applying an external magnetic field of sufficiently high intensity (in the range of 0.5-1 Tesla for operating pressures in the range of 5-15 atmospheres) causes the electrons to produce helical tracks. Assuming the tracks can be properly reconstructed, the sign of the curvature can be determined at several points along these tracks, and such information can be used to separate signal (0 nu beta beta) events containing two electrons producing a track with two different directions of curvature from background (single-electron) events producing a track that should spiral in a single direction. Due to electron multiple scattering, this strategy is not perfectly efficient on an event-by-event basis, but a statistical estimator can be constructed which can be used to reject background events by one order of magnitude at a moderate cost (about 30%) in signal efficiency. Combining this estimator with the excellent energy resolution and topological signature identification characteristic of the HPXe TPC, it is possible to reach a background rate of less than one count per ton-year of exposure. Such a low background rate is an essential feature of the next generation of 0 nu beta beta experiments, aiming to fully explore the inverse hierarchy of neutrino masses.
Address [Renner, J.; Imzaylov, A.; Monrabal, F.; Munoz, J.; Gomez-Cadenas, J. J.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: jrenner@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000369998500053 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2549
Permanent link to this record
 

 
Author Barrio, J.; Etxebeste, A.; Lacasta, C.; Muñoz, E.; Oliver, J.F.; Solaz, C.; Llosa, G.
Title Performance of VATA64HDR16 ASIC for medical physics applications based on continuous crystals and SiPMs Type Journal Article
Year 2015 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 10 Issue Pages P12001 - 12pp
Keywords Solid state detectors; Photon detectors for UV, visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs etc); Front-end electronics for detector readout; Gamma detectors (scintillators, CZT, HPG, HgI etc)
Abstract Detectors based on Silicon Photomultipliers (SiPMs) coupled to continuous crystals are being tested in medical physics applications due to their potential high resolution and sensitivity. To cope with the high granularity required for a very good spatial resolution, SiPM matrices with a large amount of elements are needed. To be able to read the information coming from each individual channel, dedicated ASICs are employed. The VATA64HDR16 ASIC is a 64-channel, charge-sensitive amplifier that converts the collected charge into a proportional current or voltage signal. A complete assessment of the suitability of that ASIC for medical physics applications based on continuous crystals and SiPMs has been carried out. The input charge range is linear from 20 pC up to 55 pC. The energy resolution obtained at 511 keV is 10% FWHM with a LaBr3 crystal and 16% FWHM with a LYSO crystal. A coincidence timing resolution of 24 ns FWHM is obtained with two LYSO crystals.
Address [Barrio, J.; Etxebeste, A.; Lacasta, C.; Munoz, E.; Oliver, J. F.; Solaz, C.; Llosa, G.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parque Cient,C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: John.Barrio@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000369998500034 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2548
Permanent link to this record
 

 
Author Candela-Juan, C.; Ballester, F.; Perez-Calatayud, J.; Vijande, J.
Title Assaying multiple I-125 seeds with the well-ionization chamber SourceCheck(4 Pi) 33005 and a new insert Type Journal Article
Year 2015 Publication Journal of Contemporary Brachytherapy Abbreviated Journal J. Contemp. Brachytherapy
Volume 7 Issue 6 Pages 492-496
Keywords brachytherapy; insert; quality assurance; prostate; seeds; well chamber
Abstract Purpose: To provide a practical solution that can be adopted in clinical routine to fulfill the AAPM-ESTRO recommendations regarding quality assurance of seeds used in prostate permanent brachytherapy. The aim is to design a new insert for the well-ionization chamber SourceCheck(4 Pi) 33005 (PTW, Germany) that allows evaluating the mean air-kerma strength of up to ten I-125 seeds with one single measurement instead of measuring each seed individually. Material and methods: The material required is: a) the SourceCheck(4 Pi) 33005 well-ionization chamber provided with a PTW insert to measure the air-kerma strength S-K of one single seed at a time; b) a newly designed insert that accommodates ten seeds in one column, which allows measuring the mean S-K of the ten seeds in one single measurement; and c) a container with ten seeds from the same batch and class of the seeds used for the patient implant, and a set of nine non-radioactive seeds.The new insert is characterized by determining its calibration coefficient, used to convert the reading of the well-chamber when ten seeds are measured to their mean S-K. The proposed method is validated by comparing the mean S-K of the ten seeds obtained from the new insert with the individual measurement of S-K of each seed, evaluated with the PTW insert. Results: The ratio between the calibration coefficient of the new insert and the calibration coefficient of the PTW insert for the SourceCheck(4 Pi) 33005 is 1.135 +/- 0.007 (k = 1). The mean S-K of a set of ten seeds evaluated with this new system is in agreement with the mean value obtained from measuring independently the S-K of each seed. Conclusions: The new insert and procedure allow evaluating the mean S-K of ten seeds prior to the implant in a single measurement. The method is faster and more efficient from radiation protection point of view than measuring the individual S-K of each seed.
Address [Candela-Juan, Cristian; Perez-Calatayud, Jose] La Fe Univ, Dept Radiat Oncol, Phys Sect, E-46026 Valencia, Spain, Email: ccanjuan@gmail.com
Corporate Author Thesis
Publisher Termedia Publishing House Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1689-832x ISBN Medium
Area Expedition Conference
Notes (down) WOS:000368381300010 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2533
Permanent link to this record
 

 
Author Miyahara, K.; Hyodo, T.; Oset, E.
Title Weak decay of Lambda(+)(c) for the study of Lambda(1405) and Lambda(1670) Type Journal Article
Year 2015 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 92 Issue 5 Pages 055204 - 8pp
Keywords
Abstract We study the Lambda(c) decay process to pi(+) and the meson-baryon final state for the analysis of Lambda resonances. Considering the Cabibbo-Kobayashi-Maskawamatrix, color suppression, diquark correlation, and the kinematical condition, we show that the final meson-baryon state should be in a pure I = 0 combination, when the meson-baryon invariantmass is small. Because the I = 1 contamination usually makes it difficult to analyze Lambda resonances directly from experiments, the Lambda(c) decay is an ideal process to study Lambda resonances. Calculating the final-state interaction by chiral unitary approaches, we find that the pi Sigma invariant mass distributions have the same peak structure in the all charge combination of the pi Sigma states related to the higher pole of the two poles of the Lambda(1405). Furthermore, we obtain a clear Lambda(1670) peak structure in the (K) over bar N and eta Lambda spectra.
Address [Miyahara, Kenta] Kyoto Univ, Dept Phys, Grad Sch Sci, Kyoto 6068502, Japan, Email: miyahara@ruby.scphys.kyoto-u.ac.jp
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000368097500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2530
Permanent link to this record
 

 
Author LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C.
Title Measurement of the forward-backward asymmetry in Z/gamma* -> mu(+)mu(-) decays and determination of the effective weak mixing angle Type Journal Article
Year 2015 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 190 - 19pp
Keywords Electroweak interaction; Forward physics; Hadron-Hadron Scattering
Abstract The forward-backward charge asymmetry for the process q (q) over bar -> Z/gamma* -> mu(+)mu(-) is measured as a function of the invariant mass of the dimuon system. Measurements are performed using proton proton collision data collected with the LHCb detector at root s = 7 and 8 TeV, corresponding to integrated luminosities of 1 fb(-1) and 2 fb(-2) respectively. Within the Standard Model the results constrain the effective electroweak mixing angle to be
Address [Bediaga, I.; De Miranda, J. M.; Ferreira Rodrigues, F.; Gomesla, A.; Massafferri, A.; Osorio Rodrigues, B.; dos Reis, A. C.; Rodrigues, A. B.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil, Email: jprice@hep.ph.liv.ac.uk
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000368080000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2529
Permanent link to this record