|   | 
Details
   web
Records
Author NEMO-3 Collaboration (Argyriades, J. et al); Martin-Albo, J.; Novella, P.
Title Measurement of the two neutrino double beta decay half-life of Zr-96 with the NEMO-3 detector Type Journal Article
Year 2010 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A
Volume 847 Issue 3-4 Pages 168-179
Keywords RADIOACTIVITY Zr-96(2 beta); measured E-beta,E- E-gamma, beta beta-, beta gamma-coin; deduced T-1/2 for 2 nu beta beta-decay, NEMO-3 detector
Abstract Using 9.4 g of Zr-96 isotope and 1221 days of data from the NEMO-3 detector corresponding (0 0.031 kg y, the obtained 2 nu beta beta decay half-life measurement is T-1/2(2 nu) = [2.35 +/- 0.14(stat) +/- 0.16(syst)] x 10(19) yr. Different characteristics of the final state electrons have been studied, such as the energy sum, individual electron energy, and angular distribution. The 2v nuclear matrix element is extracted using the measured 2 nu beta beta half-life and is M-2 nu = 0.049 +/- 0.002. Constraints on 0 nu beta beta decay have also been set.
Address [Basharina-Freshville, A.; Chapon, A.; Daraktchieva, Z.; Flack, R.; Kauer, M.; King, S.; Saakyan, R.; Thomas, J.; Vasiliev, V.] UCL, London WC1E 6BT, England, Email: kauer@hep.ucl.ac.uk
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9474 ISBN Medium
Area Expedition Conference
Notes (up) ISI:000283955700003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 337
Permanent link to this record
 

 
Author ATLAS Collaboration (Abat, E. et al); Bernabeu Verdu, J.; Castillo Gimenez, V.; Costa, M.J.; Escobar, C.; Ferrer, A.; Garcia, C.; Gonzalez-Sevilla, S.; Higon-Rodriguez, E.; Lacasta, C.; Marti-Garcia, S.; Mitsou, V.A.; Ruiz, A.; Solans, C.; Valero, A.; Valls Ferrer, J.A.
Title Combined performance studies for electrons at the 2004 ATLAS combined test-beam Type Journal Article
Year 2010 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 5 Issue Pages P11006 - 68pp
Keywords Particle tracking detectors; Transition radiation detectors; Calorimeters; Large detector systems for particle and astroparticle physics
Abstract In 2004 at the ATLAS (A Toroidal LHC ApparatuS) combined test beam, one slice of the ATLAS barrel detector (including an Inner Detector set-up and the Liquid Argon calorimeter) was exposed to particles from the H8 SPS beam line at CERN. It was the first occasion to test the combined electron performance of ATLAS. This paper presents results obtained for the momentum measurement p with the Inner Detector and for the performance of the electron measurement with the LAr calorimeter (energy E linearity and resolution) in the presence of a magnetic field in the Inner Detector for momenta ranging from 20 GeV/c to 100 GeV/c. Furthermore the particle identification capabilities of the Transition Radiation Tracker, Bremsstrahlungs-recovery algorithms relying on the LAr calorimeter and results obtained for the E/p ratio and a way how to extract scale parameters will be discussed.
Address Univ Alberta, Ctr Particle Phys, Dept Phys, Edmonton, AB T6G 2G7, Canada, Email: robert.froesch1@cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes (up) ISI:000285051500031 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 311
Permanent link to this record
 

 
Author Cervera-Villanueva, A.; Laing, A.; Martin-Albo, J.; Soler, F.J.P.
Title Performance of the MIND detector at a Neutrino Factory using realistic muon reconstruction Type Journal Article
Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 624 Issue 3 Pages 601-614
Keywords Neutrino Factory; Detector; Neutrino oscillation
Abstract A Neutrino Factory producing an intense beam composed of v(e)((v) over bar (e)) and (v) over bar (mu)(v(mu)) from muon decays has been shown to have the greatest sensitivity to the two currently unmeasured neutrino mixing parameters theta(13) and delta(CP) Using the wrong-sign muon signal to measure v(e)-> v(mu)((v) over bar (e) ->(v) over bar (mu)) oscillations in a 50kt Magnetised Iron Neutrino Detector (MIND) sensitivity to delta(CP) could be maintained down to small values of theta(13) However the detector efficiencies used in these previous studies were calculated assuming perfect pattern recognition In this paper MIND is reassessed taking into account for the first time a realistic pattern recognition for the muon candidate Reoptimisation of the analysis utilises a combination of methods including a multivariate analysis similar to the one used in MINOS to maintain high efficiency while suppressing backgrounds ensuring that the signal selection efficiency and the background levels are comparable or better than the ones in previous analyses As a result MIND remains the most sensitive future facility for the discovery of CP violation from neutrino oscillations.
Address [Laing, A.; Soler, F. J. P.] Univ Glasgow, Sch Phys & Astron, Glasgow, Lanark, Scotland
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes (up) ISI:000285370600008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 309
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title The exposure of the hybrid detector of the Pierre Auger Observatory Type Journal Article
Year 2011 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 34 Issue 6 Pages 368-381
Keywords Ultra high energy cosmic rays; Pierre Auger Observatory; Extensive air showers; Trigger; Exposure; Fluorescence detector; Hybrid
Abstract The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The “hybrid” detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.
Address [Ave, M.; Bluemer, H.; Daumiller, K.; Dembinski, H.; Engel, R.; Garrido, X.; Haungs, A.; Heck, D.; Huege, T.; Keilhauer, B.; Klages, H. O.; Kleinfeller, J.; Mathes, H. J.; Mueller, S.; Oehlschlaeger, J.; Pierog, T.; Roth, M.; Salamida, F.; Schieler, H.; Schroeder, F.; Schuessler, F.; Smida, R.; Ulrich, R.; Unger, M.; Valino, I.; Weinidl, A.; Will, M.; Wommer, M.] Karlsruhe Inst Technol, Inst Kernphys, Karlsruhe, Germany, Email: francesco.salamida@kit.edu
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes (up) ISI:000287068800007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 580
Permanent link to this record
 

 
Author Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title Advanced functionality for radio analysis in the Offline software framework of the Pierre Auger Observatory Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 635 Issue 1 Pages 92-102
Keywords Cosmic rays; Radio detection; Analysis software; Detector simulation
Abstract The advent of the Auger Engineering Radio Array (AERA) necessitates the development of a powerful framework for the analysis of radio measurements of cosmic ray air showers. As AERA performs “radio-hybrid” measurements of air shower radio emission in coincidence with the surface particle detectors and fluorescence telescopes of the Pierre Auger Observatory, the radio analysis functionality had to be incorporated in the existing hybrid analysis solutions for fluorescence and surface detector data. This goal has been achieved in a natural way by extending the existing Auger Offline software framework with radio functionality. In this article, we lay out the design, highlights and features of the radio extension implemented in the Auger Offline framework. Its functionality has achieved a high degree of sophistication and offers advanced features such as vectorial reconstruction of the electric field, advanced signal processing algorithms, a transparent and efficient handling of FFTs, a very detailed simulation of detector effects, and the read-in of multiple data formats including data from various radio simulation codes. The source code of this radio functionality can be made available to interested parties on request.
Address [Becker, K. H.; Bleve, C.; Kampert, K. H.; Krohm, N.; Kruppke-Hansen, D.; Kuempel, D.; Nierstenhoefer, N.; Oliva, P.; Rautenberg, J.; Szadkowski, Z.; Tascau, O.] Berg Univ Wuppertal, Wuppertal, Germany, Email: auger_pc@fnal.gov
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes (up) ISI:000289317100017 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 606
Permanent link to this record