|   | 
Details
   web
Records
Author Villanueva-Domingo, P.; Ichiki, K.
Title 21 cm forest constraints on primordial black holes Type Journal Article
Year 2023 Publication Publications of the Astronomical Society of Japan Abbreviated Journal Publ. Astron. Soc. Jpn.
Volume 75 Issue SP1 Pages S33-S49
Keywords dark matter; radio lines: ISM
Abstract Primordial black holes (PBHs) as part of the dark matter (DM) would modify the evolution of large-scale structures and the thermal history of the universe. Future 21 cm forest observations, sensitive to small scales and the thermal state of the intergalactic medium (IGM), could probe the existence of such PBHs. In this article, we show that the shot noise isocurvature mode on small scales induced by the presence of PBHs can enhance the amount of low-mass halos, or minihalos, and thus, the number of 21 cm absorption lines. However, if the mass of PBHs is as large as M-PBH greater than or similar to 10 M-circle dot, with an abundant enough fraction of PBHs as DM, f(PBH), the IGM heating due to accretion on to the PBHs counteracts the enhancement due to the isocurvature mode, reducing the number of absorption lines instead. The concurrence of both effects imprints distinctive signatures on the number of absorbers, allowing the abundance of PBHs to be bound. We compute the prospects for constraining PBHs with future 21 cm forest observations, finding achievable competitive upper limits on the abundance as low as f(PBH) similar to 10(-3) at M-PBH = 100 M-circle dot, or even lower at larger masses, in regions of the parameter space unexplored by current probes. The impact of astrophysical X-ray sources on the IGM temperature is also studied, which could potentially weaken the bounds.
Address [Villanueva-Domingo, Pablo] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: ichiki@a.phys.nagoya-u.ac.jp
Corporate Author Thesis
Publisher Oxford Univ Press Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6264 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000768441900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5168
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Mena, O.; Palomares-Ruiz, S.
Title A Brief Review on Primordial Black Holes as Dark Matter Type Journal Article
Year 2021 Publication Frontiers in Astronomy and Space Sciences Abbreviated Journal Front. Astron. Space Sci.
Volume 8 Issue Pages 681084 - 10pp
Keywords primordial black holes; dark matter; cosmology; accretion; 21 cm cosmology; gravitational waves; cosmic microwave background; microlensing
Abstract Primordial black holes (PBHs) represent a natural candidate for one of the components of the dark matter (DM) in the Universe. In this review, we shall discuss the basics of their formation, abundance and signatures. Some of their characteristic signals are examined, such as the emission of particles due to Hawking evaporation and the accretion of the surrounding matter, effects which could leave an impact in the evolution of the Universe and the formation of structures. The most relevant probes capable of constraining their masses and population are discussed.
Address [Villanueva-Domingo, Pablo; Mena, Olga; Palomares-Ruiz, Sergio] CSIC Univ Valencia, Inst Fis Corpuscular IFIC, Paterna, Spain, Email: pablo.villanueva.domingo@gmail.com
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-987x ISBN Medium
Area Expedition Conference
Notes (down) WOS:000660081700001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4852
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Villaescusa-Navarro, F.
Title Removing Astrophysics in 21 cm Maps with Neural Networks Type Journal Article
Year 2021 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.
Volume 907 Issue 1 Pages 44 - 14pp
Keywords Cosmology; Cold dark matter; Dark matter; Dark matter distribution; H I line emission; Intergalactic medium; Cosmological evolution; Convolutional neural networks; Large-scale structure of the universe
Abstract Measuring temperature fluctuations in the 21 cm signal from the epoch of reionization and the cosmic dawn is one of the most promising ways to study the universe at high redshifts. Unfortunately, the 21 cm signal is affected by both cosmology and astrophysics processes in a nontrivial manner. We run a suite of 1000 numerical simulations with different values of the main astrophysical parameters. From these simulations we produce tens of thousands of 21 cm maps at redshifts 10 <= z <= 20. We train a convolutional neural network to remove the effects of astrophysics from the 21 cm maps and output maps of the underlying matter field. We show that our model is able to generate 2D matter fields not only that resemble the true ones visually but whose statistical properties agree with the true ones within a few percent down to scales 2 Mpc(-1). We demonstrate that our neural network retains astrophysical information that can be used to constrain the value of the astrophysical parameters. Finally, we use saliency maps to try to understand which features of the 21 cm maps the network is using in order to determine the value of the astrophysical parameters.
Address [Villanueva-Domingo, Pablo] Univ Valencia, Inst Fis Corpuscular IFIC, CSIC, Apartado Correos 22085, E-46071 Valencia, Spain, Email: Pablo.Villanueva@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-637x ISBN Medium
Area Expedition Conference
Notes (down) WOS:000612333400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4698
Permanent link to this record
 

 
Author Lopez-Honorez, L.; Mena, O.; Palomares-Ruiz, S.; Villanueva-Domingo, P.; Witte, S.J.
Title Variations in fundamental constants at the cosmic dawn Type Journal Article
Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 026 - 25pp
Keywords cosmology of theories beyond the SM; particle physics – cosmology connection; reionization
Abstract The observation of space-time variations in fundamental constants would provide strong evidence for the existence of new light degrees of freedom in the theory of Nature. Robustly constraining such scenarios requires exploiting observations that span different scales and probe the state of the Universe at different epochs. In the context of cosmology, both the cosmic microwave background and the Lyman-a forest have proven to be powerful tools capable of constraining variations in electromagnetism, however at the moment there do not exist cosmological probes capable of bridging the gap between recombination and reionization. In the near future, radio telescopes will attempt to measure the 21 cm transition of neutral hydrogen during the epochs of reionization and the cosmic dawn (and potentially the tail end of the dark ages); being inherently sensitive to electromagnetic phenomena, these experiments will offer a unique perspective on space-time variations of the fine-structure constant and the electron mass. We show here that large variations in these fundamental constants would produce features on the 21 cm power spectrum that may be distinguishable from astrophysical uncertainties. Furthermore, we forecast the sensitivity for the Square Kilometer Array, and show that the 21 cm power spectrum may be able to constrain variations at the level of O(10(-3)).
Address [Lopez-Honorez, Laura] Univ Libre Bruxelles, Serv Phys Theor, CP225, B-1050 Brussels, Belgium, Email: llopezho@ulb.ac.be;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000551875400049 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4473
Permanent link to this record
 

 
Author Villanueva-Domingo, P.; Mena, O.; Miralda-Escude, J.
Title Maximum amplitude of the high-redshift 21-cm absorption feature Type Journal Article
Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 101 Issue 8 Pages 083502 - 8pp
Keywords
Abstract We examine the maximum possible strength of the global 21-cm absorption dip on the cosmic background radiation at high-redshift caused by the atomic intergalactic medium, when the Lyman-alpha coupling is maximum, assuming no exotic cooling mechanisms from interactions with dark matter. This maximum absorption is limited by three inevitable factors that need to be accounted for: (a) heating by energy transferred from the cosmic background radiation to the hydrogen atoms via 21-cm transitions, dubbed as 21-cm heating; (b) Ly alpha heating by scatterings of Ly alpha photons from the first stars; (c) the impact of the expected density fluctuations in the intergalactic gas in standard cold dark matter theory, which reduces the mean 21-cm absorption signal. Inclusion of this third novel effect reduces the maximum global 21-cm absorption by similar to 10%. Overall, the three effects studied here reduce the 21-cm global absorption by similar to 20% at z similar or equal to 17.
Address [Villanueva-Domingo, Pablo; Mena, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Paterna, Spain, Email: pablo.villanueva@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes (down) WOS:000523343100006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4360
Permanent link to this record